Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2016, Volume 9, Issue 3, Pages 144–151
DOI: https://doi.org/10.14529/mmp160313
(Mi vyuru337)
 

This article is cited in 5 scientific papers (total in 5 papers)

Short Notes

Discontinuous finite-element Galerkin method for numerical solution of parabolic problems in anisotropic media on triangle grids

R. V. Zhalnina, M. E. Ladonkinab, V. F. Masyagina, V. F. Tishkinb

a Ogarev Mordovia State University, Saransk, Russian Federation
b Keldysh Institute of Applied Mathematics of RAS, Moscow, Russian Federation
Full-text PDF (440 kB) Citations (5)
References:
Abstract: A new numerical algorithm for solving parabolic initial-boundary values problems in anisotropic media is proposed. The algorithm is based on Galerkin method with discontinuous basic functions on triangle meshes. The 2nd order derivatives can't be directly harmonized in a weak variational formulation using the discontinuous functions' space. Hence additional variables are introduced to reduce the initial 2nd-order equation to the system of the 1st-order equations. The special feature of this method is in consideration of additional variables within a dual mesh. The dual mesh consists of median control values and is conjugate to the initial triangle mesh. The stream values on the element boundaries are calculated with addition of stabilizing additives. The method is studied basing on the example of 2-dimensional parabolic boundary problems. Convergence and accuracy of the method are investigated. Calculations in model problem show the possibility to use the method discussed for solving parabolic problems in anisotropic media on triangle meshes.
Keywords: parabolic equations, anisotropic media, discontinuous Galerkin method, сonvergence and accuracy of the method.
Received: 21.09.2015
Bibliographic databases:
Document Type: Article
UDC: 519.633
MSC: 35-04
Language: Russian
Citation: R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, V. F. Tishkin, “Discontinuous finite-element Galerkin method for numerical solution of parabolic problems in anisotropic media on triangle grids”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016), 144–151
Citation in format AMSBIB
\Bibitem{ZhaLadMas16}
\by R.~V.~Zhalnin, M.~E.~Ladonkina, V.~F.~Masyagin, V.~F.~Tishkin
\paper Discontinuous finite-element Galerkin method for numerical solution of parabolic problems in anisotropic media on triangle grids
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 3
\pages 144--151
\mathnet{http://mi.mathnet.ru/vyuru337}
\crossref{https://doi.org/10.14529/mmp160313}
\elib{https://elibrary.ru/item.asp?id=26563760}
Linking options:
  • https://www.mathnet.ru/eng/vyuru337
  • https://www.mathnet.ru/eng/vyuru/v9/i3/p144
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:361
    Full-text PDF :115
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024