Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2016, Volume 9, Issue 3, Pages 137–143
DOI: https://doi.org/10.14529/mmp160312
(Mi vyuru336)
 

Short Notes

Finding of values for sums of functional Rayleigh–Schrodinger series for perturbed self-adjoint operators

S. I. Kadchenkoab, S. N. Kakushkina

a South Ural State University, Chelyabinsk, Russian Federation
b Nosov Magnitogorsk State Technical University, Magnitogorsk
References:
Abstract: Authors of the article developed non-iteration method for calculating the values of eigenfunctions for perturbed self-adjoint operators, namely the method of regularized traces (RT). It allows to find the values of eigenfunctions of perturbed operators aware the spectral characteristics of unperturbed operator and the eigenvalues of the perturbed operator. In contrast to the known methods of finding the eigenfunctions, the RT method does not use the matrix, and the values of eigenfunctions are searched by linear formulas. This greatly increases its computational efficiency compared with classical methods. For application of the RT method in practice one should be able to summarize the functional Rayleigh–Schrodinger series of perturbed discrete operators. Previously authors obtained formulas for finding the "weighted" corrections of the perturbation theory, that allowed to approximate the sum of functional Rayleigh–Schrodinger series, by partial sums consisting of these corrections. In the article formulas for finding the values of sums of functional Rayleigh–Schrodinger series of perturbed discrete operators in the the nodal points were obtained. Computational experiments for finding the values of the eigenfunctions of the perturbed one-dimensional Laplace operator were conducted. The results of the experiment showed the high computational efficiency of this method of summation of the Rayleigh–Schrodinger series.
Keywords: perturbed operators; eigenvalues, eigenfunctions; multiple spectrum; the sum of functional Rayleigh–Schrodinger series, "weighted" corrections of the perturbation theory.
Received: 28.01.2016
Bibliographic databases:
Document Type: Article
UDC: 519.624.3
MSC: 47A10
Language: Russian
Citation: S. I. Kadchenko, S. N. Kakushkin, “Finding of values for sums of functional Rayleigh–Schrodinger series for perturbed self-adjoint operators”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016), 137–143
Citation in format AMSBIB
\Bibitem{KadKak16}
\by S.~I.~Kadchenko, S.~N.~Kakushkin
\paper Finding of values for sums of functional Rayleigh--Schrodinger series for perturbed self-adjoint operators
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 3
\pages 137--143
\mathnet{http://mi.mathnet.ru/vyuru336}
\crossref{https://doi.org/10.14529/mmp160312}
\elib{https://elibrary.ru/item.asp?id=25717244}
Linking options:
  • https://www.mathnet.ru/eng/vyuru336
  • https://www.mathnet.ru/eng/vyuru/v9/i3/p137
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :51
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024