Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2016, Volume 9, Issue 2, Pages 117–123
DOI: https://doi.org/10.14529/mmp160211
(Mi vyuru320)
 

This article is cited in 8 scientific papers (total in 8 papers)

Short Notes

Numerical research of the Barenblatt–Zheltov–Kochina stochastic model

S. I. Kadchenkoab, E. A. Soldatovab, S. A. Zagrebinab

a Nosov Magnitogorsk State Technical University, Magnitogorsk
b South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: At present, investigations of Sobolev-type models are actively developing. In the solution of applied problems the results allowing to get their numerical solutions are very significant. In the article the algorithm for numerical solving of the initial boundary value problem is developed. The problem describes the pressure distribution of the homogeneous fluid in the horizontal layer in the circle. The layer is opened by a vertical well of a small radius. In our research we suppose that random disturbing loads have an influence on the fluid. The problem was solved under two assumptions. Firstly, we suppose that an unstable fluid flow is axially symmetric, and secondly, that in initial moment the pressure in the layer is constant. After the process of the discretization we modify the original model to the Cauchy problem for the system of ordinary differential equations. For the numerical solution we use algorithms based on explicit one-step formulas of the Runge–Kutta type with the seventh-order accuracy and with the selection of the integration step. We also use the scheme of the eighth-order accuracy to evaluate the calculation accuracy on each steps of time. According to the results of this control, we choose the time-step. A lot of numerical experiments have shown high numerical efficiency of the algorithm that we use to solve the investigated initial-boundary problem.
Keywords: stochastic Sobolev type equation; numerical solution; Barenblatt–Zheltova–Kochina model; Cauchy problem.
Received: 20.01.2016
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 60H30
Language: English
Citation: S. I. Kadchenko, E. A. Soldatova, S. A. Zagrebina, “Numerical research of the Barenblatt–Zheltov–Kochina stochastic model”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:2 (2016), 117–123
Citation in format AMSBIB
\Bibitem{KadSolZag16}
\by S.~I.~Kadchenko, E.~A.~Soldatova, S.~A.~Zagrebina
\paper Numerical research of the Barenblatt--Zheltov--Kochina stochastic model
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 2
\pages 117--123
\mathnet{http://mi.mathnet.ru/vyuru320}
\crossref{https://doi.org/10.14529/mmp160211}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376997200011}
\elib{https://elibrary.ru/item.asp?id=26224829}
Linking options:
  • https://www.mathnet.ru/eng/vyuru320
  • https://www.mathnet.ru/eng/vyuru/v9/i2/p117
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024