Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2016, Volume 9, Issue 2, Pages 90–102
DOI: https://doi.org/10.14529/mmp160208
(Mi vyuru317)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical Modelling

Active parametric identification of Gaussian linear discrete system based on experiment design

V. M. Chubich, O. S. Chernikova, E. A. Beriket

Novosibirsk State Technical University, Novosibirsk, Russian Federation
Full-text PDF (803 kB) Citations (1)
References:
Abstract: The application of methods of theory of experiment design for the identification of dynamic systems allows the researcher to gain more qualitative mathematical model compared with the traditional methods of passive identification. In this paper, the authors summarize results and offer the algorithms of active identification of the Gaussian linear discrete systems based on the design inputs and initial states. We consider Gaussian linear discrete systems described by state space models, under the assumption that unknown parameters are included in the matrices of the state, control, disturbance, measurement, covariance matrices of system noise and measurement. The original software for active identification of Gaussian linear discrete systems based on the design inputs and initial states are developed. Parameter estimation is carried out using the maximum likelihood method involving the direct and dual procedures for synthesizing A- and D- optimal experiment design. The example of the model structure for the control system of submarine shows the effectiveness and appropriateness of procedures for active parametric identification.
Keywords: parameter estimation; maximum likelihood method; Kalman filter; experiment design; (Fisher) information matrix.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 2014/138
The work is executed under the auspices of the Ministry of education and science of the Russian Federation (№ 2014/138, project № 1689).
Received: 24.04.2015
Bibliographic databases:
Document Type: Article
UDC: 618.5.015
MSC: 93E12
Language: English
Citation: V. M. Chubich, O. S. Chernikova, E. A. Beriket, “Active parametric identification of Gaussian linear discrete system based on experiment design”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:2 (2016), 90–102
Citation in format AMSBIB
\Bibitem{ChuCheBer16}
\by V.~M.~Chubich, O.~S.~Chernikova, E.~A.~Beriket
\paper Active parametric identification of Gaussian linear discrete system based on experiment design
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 2
\pages 90--102
\mathnet{http://mi.mathnet.ru/vyuru317}
\crossref{https://doi.org/10.14529/mmp160208}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376997200008}
\elib{https://elibrary.ru/item.asp?id=26224826}
Linking options:
  • https://www.mathnet.ru/eng/vyuru317
  • https://www.mathnet.ru/eng/vyuru/v9/i2/p90
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024