Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2015, Volume 8, Issue 4, Pages 113–119
DOI: https://doi.org/10.14529/mmp150410
(Mi vyuru293)
 

This article is cited in 10 scientific papers (total in 10 papers)

Short Notes

On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces

A. A. Zamyshlyaeva, D. K. T. Al-Isawi

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: Interest in Sobolev type equations has recently increased significantly, moreover, there arose a necessity for their consideration in quasi-Banach spaces. The need is dictated not so much by the desire to fill up the theory but by the aspiration to comprehend non-classical models of mathematical physics in quasi-Banach spaces. Notice that the Sobolev type equations are called evolutionary if solutions exist only on ${{\mathbb R}}_{{\mathbf +}}$.
The theory of holomorphic degenerate semigroups of operators constructed earlier in Banach spaces and Frechet spaces is transferred to quasi-Sobolev spaces of sequences. This article contains results about existence of the exponential dichotomies of solutions to evolution Sobolev type equation in quasi-Sobolev spaces. To obtain this result we proved the relatively spectral theorem and the existence of invariant spaces of solutions.
The article besides the introduction and references contains two paragraphs. In the first one, quasi-Banach spaces, quasi-Sobolev spaces and polynomials of Laplace quasi-operator are defined. Moreover the conditions for existence of degenerate holomorphic operator semigroups in quasi-Banach spaces of sequences are obtained. In other words, we prove the first part of the generalization of the Solomyak–Iosida theorem to quasi-Banach spaces of sequences. In the second paragraph the phase space of the homogeneous equation is constructed. Here we show the existence of invariant spaces of equation and get the conditions for exponential dichotomies of solutions.
Keywords: holomorphic degenerate semigroups; quasi-Banach spaces; quasi-Sobolev spaces; invariant space; exponential dichotomy of solution.
Received: 21.09.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 46A16, 47D03, 34D09
Language: English
Citation: A. A. Zamyshlyaeva, D. K. T. Al-Isawi, “On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015), 113–119
Citation in format AMSBIB
\Bibitem{ZamAl-15}
\by A.~A.~Zamyshlyaeva, D.~K.~T.~Al-Isawi
\paper On some properties of solutions to one class of evolution Sobolev type mathematical models in quasi-Sobolev spaces
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2015
\vol 8
\issue 4
\pages 113--119
\mathnet{http://mi.mathnet.ru/vyuru293}
\crossref{https://doi.org/10.14529/mmp150410}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000422203200010}
\elib{https://elibrary.ru/item.asp?id=24989387}
Linking options:
  • https://www.mathnet.ru/eng/vyuru293
  • https://www.mathnet.ru/eng/vyuru/v8/i4/p113
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :71
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024