Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2015, Volume 8, Issue 2, Pages 105–116
DOI: https://doi.org/10.14529/mmp150209
(Mi vyuru267)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical Modelling

On some mathematical models of filtration theory

S. G. Pyatkov, S. N. Shergin

Ugra State University, Khanty-Mansyisk, Russian Federation
Full-text PDF (436 kB) Citations (4)
References:
Abstract: The article is devoted to the study of some mathematical models arising in filtration theory. We examine an inverse problem of determining an unknown right-hand side and coefficients in a pseudoparabolic equation of the third order. Equations of this type and more general Sobolev-type equations arise in filtration theory, heat and mass transfer, plasma physics, and in many other fields. We reduce the problem to an operator equation whose solvability is established with the help of a priori estimates and the fixed point theorem. Together with the natural smoothness conditions for the data, we require also some well-posedness condition to be fulfilled which is actually reduced to the condition of nondegeneracy of some matrix constructed with the use of the data of the problem. Theorems on existence and uniqueness of solutions to this problem are stated and proven. Stability estimates are exposed. In the linear case the result is global in time, while in the nonlinear case it is local. The main function spaces used are the Sobolev spaces.
Keywords: pseudoparabolic equation; existence and uniqueness theorem; inverse problem; boundary value problem.
Received: 27.12.2014
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35K70
Language: English
Citation: S. G. Pyatkov, S. N. Shergin, “On some mathematical models of filtration theory”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015), 105–116
Citation in format AMSBIB
\Bibitem{PyaShe15}
\by S.~G.~Pyatkov, S.~N.~Shergin
\paper On some mathematical models of filtration theory
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2015
\vol 8
\issue 2
\pages 105--116
\mathnet{http://mi.mathnet.ru/vyuru267}
\crossref{https://doi.org/10.14529/mmp150209}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000422200600009}
\elib{https://elibrary.ru/item.asp?id=23442158}
Linking options:
  • https://www.mathnet.ru/eng/vyuru267
  • https://www.mathnet.ru/eng/vyuru/v8/i2/p105
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:299
    Full-text PDF :77
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024