Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2015, Volume 8, Issue 2, Pages 5–23
DOI: https://doi.org/10.14529/mmp150201
(Mi vyuru259)
 

This article is cited in 17 scientific papers (total in 17 papers)

Survey Articles

Some generalizations of the Showalter–Sidorov problem for Sobolev-type models

A. V. Keller, S. A. Zagrebina

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: At present, investigations of Sobolev-type models are actively developing. In the solution of applied problems the results allowing to get their numerical solutions are very significant. The initial Showalter–Sidorov condition is not simply a generalization of the Cauchy condition for Sobolev-type models. It allows to find an approximate solution without checking the coordination of initial data. This article presents an overview of some results of the Chelyabinsk mathematical school on Sobolev type equations obtained using either directly Showalter–Sidorov condition or its generalizations.
The article consists of seven sections. The first one includes results on investigation of solvability of an optimal measurement problem for the Shestakov–Sviridyuk model. The second section provides an overview of the currently existing approaches to the concept of white noise. The third section contains results on solvability of a weakened Showalter–Sidorov problem for the Leontief type system with additive “white noise”. In the fourth section we present results on the unique solvability of multipoint initial-final value problem for the Sobolev type equation of the first order. A study of optimal control of solutions to this problem is discussed in the fifth section. The sixth and the seventh sections contain results related to research of optimal control of solutions to the Showalter–Sidorov problem and initial-final value problem for the Sobolev-type equation of the second order, respectively.
Keywords: Sobolev type equations; Leontief type sistems; optimal control; Showalter–Sidorov problem; the (multipoint) initial-finale value condition; optimal measurement.
Received: 20.01.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35K70, 60H30
Language: Russian
Citation: A. V. Keller, S. A. Zagrebina, “Some generalizations of the Showalter–Sidorov problem for Sobolev-type models”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015), 5–23
Citation in format AMSBIB
\Bibitem{KelZag15}
\by A.~V.~Keller, S.~A.~Zagrebina
\paper Some generalizations of the Showalter--Sidorov problem for Sobolev-type models
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2015
\vol 8
\issue 2
\pages 5--23
\mathnet{http://mi.mathnet.ru/vyuru259}
\crossref{https://doi.org/10.14529/mmp150201}
\elib{https://elibrary.ru/item.asp?id=23442149}
Linking options:
  • https://www.mathnet.ru/eng/vyuru259
  • https://www.mathnet.ru/eng/vyuru/v8/i2/p5
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024