Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2014, Volume 7, Issue 4, Pages 76–89
DOI: https://doi.org/10.14529/mmp140306
(Mi vyuru239)
 

Programming & Computer Software

Solving of a minimal realization problem in Maple

V. M. Adukov, A. S. Fadeeva

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: In the computer algebra system Maple, we have created a package MinimalRealization to solve the minimal realization problem for a discrete-time linear time-invariant system. The package enables to construct the minimal realization of a system starting with either a finite sequence of Markov parameters of a system, or a transfer function, or any non-minimal realization. It is designed as a user library and consists of 11 procedures: Approx EssPoly, ApproxNullSpace, Approxrank, ExactEssPoly, Frac tion al FactorizationG, FractionalFactorizationMP, MarkovParameters, MinimalityTest, Mini malRealizationG, MinimalRealizationMP, Realization2MinimalRealization. The realization algorithm is based on solving of sequential problems: (1) determination of indices and essential polynimials (procedures ExactEssPoly, ApproxEssPoly), (2) construction of a right fractional factorization of the transfer function (FractionalFactorizationG, FractionalFactorizationMP), (3) construction of the minimal realization by the given fractional factorization (Mini malRealizationG, Mini malRealizationMP, Realization2MinimalRealization). We can solve the problem both in the case of exact calculations (in rational arithmetic) and in the presence of rounding errors, or for input data which are disturbed by noise. In the latter case the problem is ill-posed because it requires finding the rank and the null space of a matrix. We use the singular value decomposition as the most accurate method for calculation of the numerical rank (Approxrank) and the numerical null space (ApproxNullSpace). Numerical experiments with the package MinimalRealization demonstrate good agreement between the exact and approximate solutions of the problem.
Keywords: discrete-time linear time-invariant systems; fractional factorization; mini mal realization; algorithms for solving of realization problem.
Received: 13.08.2014
Document Type: Article
UDC: 519.71
MSC: 93C05
Language: English
Citation: V. M. Adukov, A. S. Fadeeva, “Solving of a minimal realization problem in Maple”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:4 (2014), 76–89
Citation in format AMSBIB
\Bibitem{AduFad14}
\by V.~M.~Adukov, A.~S.~Fadeeva
\paper Solving of a minimal realization problem in Maple
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2014
\vol 7
\issue 4
\pages 76--89
\mathnet{http://mi.mathnet.ru/vyuru239}
\crossref{https://doi.org/10.14529/mmp140306}
Linking options:
  • https://www.mathnet.ru/eng/vyuru239
  • https://www.mathnet.ru/eng/vyuru/v7/i4/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :82
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024