Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2014, Volume 7, Issue 3, Pages 84–92
DOI: https://doi.org/10.14529/mmp140309
(Mi vyuru148)
 

Programming & Computer Software

Hoff's model on a geometric graph. Simulations

A. A. Bayazitova

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: This article studies numerically the solutions to the Showalter–Sidorov (Cauchy) initial value problem and inverse problems for the generalized Hoff model. Basing on the phase space method and a modified Galerkin method, we develop numerical algorithms to solve initial-boundary value problems and inverse problems for this model and implement them as a software bundle in the symbolic computation package Maple 15.0. Hoff's model describes the dynamics of H-beam construction. Hoff's equation, set up on each edge of a graph, describes the buckling of the H-beam.
The inverse problem consists in finding the unknown coefficients using additional measurements, which account for the change of the rate in buckling dynamics at the initial and terminal points of the beam at the initial moment. This investigation rests on the results of the theory of semi-linear Sobolev-type equations, as the initial-boundary value problem for the corresponding system of partial differential equations reduces to the abstract Showalter–Sidorov (Cauchy) problem for the Sobolev-type equation. In each example we calculate the eigenvalues and eigenfunctions of the Sturm–Liouville operator on the graph and find the solution in the form of the Galerkin sum of a few first eigenfunctions. Software enables us to graph the numerical solution and visualize the phase space of the equations of the specified problems. The results may be useful for specialists in the field of mathematical physics and mathematical modelling.
Keywords: Sobolev-type equation; Hoff's model.
Received: 07.05.2014
Document Type: Article
Language: English
Citation: A. A. Bayazitova, “Hoff's model on a geometric graph. Simulations”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014), 84–92
Citation in format AMSBIB
\Bibitem{Bay14}
\by A.~A.~Bayazitova
\paper Hoff's model on a geometric graph. Simulations
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2014
\vol 7
\issue 3
\pages 84--92
\mathnet{http://mi.mathnet.ru/vyuru148}
\crossref{https://doi.org/10.14529/mmp140309}
Linking options:
  • https://www.mathnet.ru/eng/vyuru148
  • https://www.mathnet.ru/eng/vyuru/v7/i3/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :86
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024