Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2014, Volume 7, Issue 2, Pages 129–135
DOI: https://doi.org/10.14529/mmp140213
(Mi vyuru138)
 

This article is cited in 3 scientific papers (total in 3 papers)

Short Notes

Optimal Control in Higher-Order Sobolev-Type Mathematical Models with $(A,p)$-Bounded Operators

O. N. Tsyplenkova

South Ural State University, Chelyabinsk, Russian Federation
Full-text PDF (445 kB) Citations (3)
References:
Abstract: This article deals with the optimal control problem for an incomplete Sobolev-type equation of high order. We prove an existence and uniqueness theorem for strong solutions to the initial value problem for a given equation. We obtain sufficient and necessary conditions for the existence and uniqueness of optimal control of these solutions. We use the ideas and methods developed by G. A. Sviridyuk and his school. The proof of the existence and uniqueness of optimal control rests on the theory of optimal control developed by J.-L. Lions.
Keywords: Sobolev-type equations; strong solutions; optimal control.
Received: 24.12.2013
Document Type: Article
UDC: 517.9
MSC: 35A01
Language: Russian
Citation: O. N. Tsyplenkova, “Optimal Control in Higher-Order Sobolev-Type Mathematical Models with $(A,p)$-Bounded Operators”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:2 (2014), 129–135
Citation in format AMSBIB
\Bibitem{Tsy14}
\by O.~N.~Tsyplenkova
\paper Optimal Control in Higher-Order Sobolev-Type Mathematical Models with $(A,p)$-Bounded Operators
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2014
\vol 7
\issue 2
\pages 129--135
\mathnet{http://mi.mathnet.ru/vyuru138}
\crossref{https://doi.org/10.14529/mmp140213}
Linking options:
  • https://www.mathnet.ru/eng/vyuru138
  • https://www.mathnet.ru/eng/vyuru/v7/i2/p129
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :64
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024