Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2024, Volume 16, Issue 3, Pages 18–26
DOI: https://doi.org/10.14529/mmph240303
(Mi vyurm603)
 

Mathematics

The biharmonic Neumann problem with double involution

V. V. Karachik

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: This paper studies the solvability of a new class of boundary value problems with nonlocal Neumann conditions for a biharmonic equation in a sphere. Non-local conditions are specified in the form of a connection between the values of the desired function at different points of the boundary. In this case, the boundary operator is determined using matrices of involution-type mappings. The theorem of existence the and uniqueness of the solution is proved and the integral representation of the solution to the problem under consideration is found.
Keywords: nonlocal Neumann problem, biharmonic equation, solvability conditions, Green's function.
Received: 16.03.2024
Document Type: Article
UDC: 517.956.223
Language: Russian
Citation: V. V. Karachik, “The biharmonic Neumann problem with double involution”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 16:3 (2024), 18–26
Citation in format AMSBIB
\Bibitem{Kar24}
\by V.~V.~Karachik
\paper The biharmonic Neumann problem with double involution
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2024
\vol 16
\issue 3
\pages 18--26
\mathnet{http://mi.mathnet.ru/vyurm603}
\crossref{https://doi.org/10.14529/mmph240303}
Linking options:
  • https://www.mathnet.ru/eng/vyurm603
  • https://www.mathnet.ru/eng/vyurm/v16/i3/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :26
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025