Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2014, Volume 6, Issue 1, Pages 30–35 (Mi vyurm6)  

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Analysis of invariance under Galilean transformation of two-phase mathematical models of heterogeneous media

Yu. M. Kovalev

South Ural State University
Full-text PDF (244 kB) Citations (2)
References:
Abstract: The article analyzes the invariance under Galilean transformation of mathematical model describing the transition of combustion into an explosion of solid monopropellant in a two-phase heterogeneous medium: gas is solid. It has been shown that the equation of total energy conservation of the mixture is not invariant under Galilean transformation. Consequently, this model can not be used in the analysis of the transition of convective combustion of solid unitary fuel into explosion.
Keywords: mathematical model, invariance, multi-component mixture.
Received: 16.01.2014
Document Type: Article
UDC: 532.529
Language: Russian
Citation: Yu. M. Kovalev, “Analysis of invariance under Galilean transformation of two-phase mathematical models of heterogeneous media”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 6:1 (2014), 30–35
Citation in format AMSBIB
\Bibitem{Kov14}
\by Yu.~M.~Kovalev
\paper Analysis of invariance under Galilean transformation of two-phase mathematical models of heterogeneous media
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2014
\vol 6
\issue 1
\pages 30--35
\mathnet{http://mi.mathnet.ru/vyurm6}
Linking options:
  • https://www.mathnet.ru/eng/vyurm6
  • https://www.mathnet.ru/eng/vyurm/v6/i1/p30
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :65
    References:50
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024