Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2023, Volume 15, Issue 3, Pages 34–42
DOI: https://doi.org/10.14529/mmph230304
(Mi vyurm563)
 

Mechanics

Hartmann flow in a fluid layer with spatially inhomogeneous properties

R. Okatevab, P. G. Frickab, I. V. Kolesnichenkoa

a Institute of Continuous Media Mechanics UB RAS, Perm, Russian Federation
b Perm State University, Perm, Russian Federation
References:
Abstract: In this study we consider the flow of a spatially-inhomogeneous electrically conductive fluid between parallel planes in a transverse magnetic field. The distributions of electrical conductivity and viscosity of the fluid are given by linear functions. The slopes of these distributions characterize the maximum deviation of the fluid properties from their mean values. We show that inhomogeneity of the fluid properties leads to distortion of the velocity profiles. The resulting profiles are asymmetric and have inflection points. We use a quantity equal to the ratio of flow rates in the upper and lower halves of the layer as a quantitative measure of asymmetry. We determine the relationship between this quantity, the average Hartmann number, and the parameters of the distributions of inhomogeneous properties. We show that starting from a relatively small mean Hartmann number, the inflection points in the velocity profiles appear for any values of the distribution parameters. We provide estimates of characteristic temperatures and concentrations of non-conducting impurity for liquid sodium, at which the described effects appear.
Keywords: magnetohydrodynamics, Hartmann flow, inhomogeneous properties, electric conductivity.
Funding agency Grant number
Russian Science Foundation 22-19-20106
Received: 02.05.2023
Document Type: Article
UDC: 537.84
Language: Russian
Citation: R. Okatev, P. G. Frick, I. V. Kolesnichenko, “Hartmann flow in a fluid layer with spatially inhomogeneous properties”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:3 (2023), 34–42
Citation in format AMSBIB
\Bibitem{OkaFriKol23}
\by R.~Okatev, P.~G.~Frick, I.~V.~Kolesnichenko
\paper Hartmann flow in a fluid layer with spatially inhomogeneous properties
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2023
\vol 15
\issue 3
\pages 34--42
\mathnet{http://mi.mathnet.ru/vyurm563}
\crossref{https://doi.org/10.14529/mmph230304}
Linking options:
  • https://www.mathnet.ru/eng/vyurm563
  • https://www.mathnet.ru/eng/vyurm/v15/i3/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:55
    Full-text PDF :10
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025