Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2023, Volume 15, Issue 1, Pages 34–42
DOI: https://doi.org/10.14529/mmph230104
(Mi vyurm545)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

An autocoder of the electrical activity of the human brain

R. V. Meshcheryakov, D. A. Volf, Y. A. Turovsky

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
Full-text PDF (792 kB) Citations (1)
References:
Abstract: The authors identify hidden parameters of the function describing the electrical activity of the human brain, obtained using electroencephalography (EEG), with the help of an artificial neural network and deep machine learning. The compression of applied information, necessary to reduce the dimensionality of the feature space of the data in order to obtain a model of an artificial neural network-an autoencoder is formulated. The novelty of the general solution and the theoretical aspects and problems of existing compression methods are described. An experimental study is carried out, which consists in obtaining an autoencoder model using applied data EEG sequences containing visual evoked potentials. The compression problem is solved by decreasing the dimensionality of the multidimensional vector associated with the sample. The autoencoder encodes the original multi-dimensional vector into a vector of smaller dimensionality. Using deep machine learning, a coding function is found such that reverse decoding into the original vector can be performed. As a result of the empirical selection of the vector dimensionality, the best experimental model of the autoencoder was chosen, which compresses the feature space of dimensionality equal to 1260 (in the initial sense EEG signals of duration 0,2 s) to a 24-dimensional space, with the possibility of the reconstruction of the initial signal with losses of not more than 10 %.
Keywords: brain-computer interface, BCI, electroencephalogram, EEG, control, feature dimensionality reduction, evoked potentials, autoencoder, encoding.
Received: 03.10.2022
Document Type: Article
UDC: 004.5: 004.89
Language: Russian
Citation: R. V. Meshcheryakov, D. A. Volf, Y. A. Turovsky, “An autocoder of the electrical activity of the human brain”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:1 (2023), 34–42
Citation in format AMSBIB
\Bibitem{MesVolTur23}
\by R.~V.~Meshcheryakov, D.~A.~Volf, Y.~A.~Turovsky
\paper An autocoder of the electrical activity of the human brain
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2023
\vol 15
\issue 1
\pages 34--42
\mathnet{http://mi.mathnet.ru/vyurm545}
\crossref{https://doi.org/10.14529/mmph230104}
Linking options:
  • https://www.mathnet.ru/eng/vyurm545
  • https://www.mathnet.ru/eng/vyurm/v15/i1/p34
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :25
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024