Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2022, Volume 14, Issue 4, Pages 12–19
DOI: https://doi.org/10.14529/mmph220402
(Mi vyurm532)
 

Mathematics

Geometric properties of the Bernatsky integral operator

F. F. Mayer, M. G. Tastanov, A. A. Utemisova

Kostanay Regional University named after A. Baitursynov, Kostanay, Republic of Kazakhstan
References:
Abstract: In the geometric theory of complex variable functions, the study of mapping of classes of regular functions using various operators has now become an independent trend. The connection $f(z)\in S^{o}\Leftrightarrow g(z) = zf'(z) \in S^*$ of the classes $S^{o}$ and $S^*$ of convex and star-shaped functions can be considered as mapping using the differential operator $G[f](x) = zf'(z)$ of class $S^{o}$ to class $S^*$, that is, $G: S^{o} \to S^*$ or $G(S^{o}) = S^*$. The impetus for studying this range of issues was M. Bernatsky's assumption that the inverse operator $G^{-1}[f](x)$, which translates $S^* \to S^{o}$ and thereby “improves” the properties of functions, maps the entire class $S$ of single-leaf functions into itself.
At present, a number of articles have been published which study the various integral operators. In particular, they establish sets of values of indicators included in these operators where operators map class $S$ or its subclasses to themselves or to other subclasses.
This paper determines the values of the Bernatsky parameter included in the generalized integral operator, at which this operator transforms a subclass of star-shaped functions allocated by the condition $a < \mathrm{Re}\, zf'(z)/f(z) < b$ ($0 < a < 1 < b$), in the class $K(\gamma)$ of functions, almost convex in order $\gamma$. The results of the article summarize or reinforce previously known effects.
Keywords: geometric theory of functions of a complex variable, single-leaf functions, Bernatsky integral operator, convex, star-shaped and almost convex functions.
Received: 18.01.2022
Document Type: Article
UDC: 517.54
Language: Russian
Citation: F. F. Mayer, M. G. Tastanov, A. A. Utemisova, “Geometric properties of the Bernatsky integral operator”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:4 (2022), 12–19
Citation in format AMSBIB
\Bibitem{MaiTasUte22}
\by F.~F.~Mayer, M.~G.~Tastanov, A.~A.~Utemisova
\paper Geometric properties of the Bernatsky integral operator
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2022
\vol 14
\issue 4
\pages 12--19
\mathnet{http://mi.mathnet.ru/vyurm532}
\crossref{https://doi.org/10.14529/mmph220402}
Linking options:
  • https://www.mathnet.ru/eng/vyurm532
  • https://www.mathnet.ru/eng/vyurm/v14/i4/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :30
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025