Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2020, Volume 12, Issue 4, Pages 41–50
DOI: https://doi.org/10.14529/mmph200405
(Mi vyurm463)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Construction an observation in the Shestakov–Sviridyuk model in terms of multidimensional “white noise” distortion

M. A. Sagadeeva

South Ural State University, Chelyabinsk, Russian Federation
Full-text PDF (615 kB) Citations (2)
References:
Abstract: The Shestakov–Sviridyuk model is a mathematical model of a measuring unit used to reconstruct a dynamically distorted signal with the help of experimental data. This model is also called the optimal dynamic measurement problem. The theory of optimal dynamic measurement is based on the problem of minimizing the difference between the values of a virtual observation obtained using a computational model and experimental data, usually distorted by some disturbances. The article describes the Shestakov–Sviridyuk model of optimal dynamic measurement in terms of various types of disturbances. It focuses on the preliminary stage of the study of the optimal dynamic measurement problem, namely, the Pyt'ev–Chulichkov method for constructing observation data, i. e. converting experimental data to clean them from disturbances in the form of “white noise”, which is understood as the Nelson–Glicklich derivative of the multidimensional Wiener process. To use this method, a priori information on the properties of the functions describing the observation, is used.
Keywords: optimal dynamic measurement, the Leontief-type system, resolving flow of matrices, multidimensional Wiener process, Nelson–Glicklich derivative.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FENU-2020-0022 (2020072ГЗ)
Received: 09.10.2020
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. A. Sagadeeva, “Construction an observation in the Shestakov–Sviridyuk model in terms of multidimensional “white noise” distortion”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:4 (2020), 41–50
Citation in format AMSBIB
\Bibitem{Sag20}
\by M.~A.~Sagadeeva
\paper Construction an observation in the Shestakov--Sviridyuk model in terms of multidimensional ``white noise'' distortion
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2020
\vol 12
\issue 4
\pages 41--50
\mathnet{http://mi.mathnet.ru/vyurm463}
\crossref{https://doi.org/10.14529/mmph200405}
Linking options:
  • https://www.mathnet.ru/eng/vyurm463
  • https://www.mathnet.ru/eng/vyurm/v12/i4/p41
  • This publication is cited in the following 2 articles:
    1. A. V. Keller, I. A. Kolesnikov, “Metody avtomaticheskogo i optimalnogo upravleniya v dinamicheskikh izmereniyakh”, J. Comp. Eng. Math., 10:4 (2023), 3–25  mathnet  crossref
    2. E. V. Bychkov, S. A. Zagrebina, A. A. Zamyshlyaeva, A. V. Keller, N. A. Manakova, M. A. Sagadeeva, G. A. Sviridyuk, “Razvitie teorii optimalnykh dinamicheskikh izmerenii”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 15:3 (2022), 19–33  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :48
    References:34
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025