Abstract:
The article describes linear functional equations on simple smooth curves with a shift function having a non-zero derivative satisfying the Hölder condition, and fixed points only at the ends of the curve. The objective of the article is to find the conditions of the existence and uniqueness of the solution of such equations in the Hölder class functions with the coefficient and the right-hand side satisfying the Hölder conditions. These conditions are obtained depending on the values of the equation coefficient at the ends of the curve. Various specifics at the ends of the curve are considered. The indicators of the Hölder solutions are determined. The possibilities of applying linear functional equations to the study and solution of singular integral equations with logarithmic singularities are shown.
Keywords:
singular integral equations with a shift, linear functional equations with a single variable, Hölder conditions.
Received: 28.04.2020
Document Type:
Article
UDC:
539.374:621.791.052
Language: Russian
Citation:
V. L. Dilman, “Linear functional equations in the Hölder class functions on a simple smooth curve”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:2 (2020), 5–12
\Bibitem{Dil20}
\by V.~L.~Dilman
\paper Linear functional equations in the H\"older class functions on a simple smooth curve
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2020
\vol 12
\issue 2
\pages 5--12
\mathnet{http://mi.mathnet.ru/vyurm443}
\crossref{https://doi.org/10.14529/mmph200201}
Linking options:
https://www.mathnet.ru/eng/vyurm443
https://www.mathnet.ru/eng/vyurm/v12/i2/p5
This publication is cited in the following 3 articles:
V. L. Dilman, T. V. Karpeta, “Nepreryvnye resheniya lineinykh funktsionalnykh uravnenii na kusochno-gladkikh krivykh v matematicheskikh modelyakh kraevykh zadach so sdvigom”, J. Comp. Eng. Math., 11:2 (2024), 11–21
V. L. Dilman, D. A. Komissarova, “Lineinye funktsionalnye uravneniya v klassakh pervoobraznykh ot lebegovskikh funktsii na otrezkakh krivykh”, Chelyab. fiz.-matem. zhurn., 8:1 (2023), 5–17
V. L. Dilman, “Svoistva i opisanie mnozhestv reshenii lineinykh funktsionalnykh uravnenii na prostoi gladkoi krivoi”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 15:4 (2023), 5–13