Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2020, Volume 12, Issue 1, Pages 14–23
DOI: https://doi.org/10.14529/mmph200102
(Mi vyurm434)
 

Mathematics

Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor

O. V. Gavrilova

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: This article studies a mathematical model of reaction-diffusion in a tubular reactor based on degenerate equations of reaction-diffusion type defined on a geometric graph. It is precisely the degenerate case that is studied, since when building the mathematical model it is taken into account that the speed of one sought function is significantly higher than the speed of the other. This model belongs to a wide class of semilinear Sobolev-type equations. We give sufficient conditions for the simplicity of the phase manifold of the abstract Sobolev-type equation in the case of $s$-monotone and $p$-coercive operator; we prove the existence and uniqueness of a solution to the Showalter–Sidorov problem in the weak generalized sense, and the existence of optimal control over weak generalized solutions to this problem. On the basis of the abstract theory, we find sufficient conditions for the existence of optimal control for a mathematical model of neural signal transmission.
Keywords: Sobolev-type equations, phase manifold, Showalter–Sidorov problem, reaction-diffusion equations, optimal control problem.
Received: 26.12.2019
Document Type: Article
UDC: 517.9
Language: English
Citation: O. V. Gavrilova, “Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:1 (2020), 14–23
Citation in format AMSBIB
\Bibitem{Gav20}
\by O.~V.~Gavrilova
\paper Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2020
\vol 12
\issue 1
\pages 14--23
\mathnet{http://mi.mathnet.ru/vyurm434}
\crossref{https://doi.org/10.14529/mmph200102}
Linking options:
  • https://www.mathnet.ru/eng/vyurm434
  • https://www.mathnet.ru/eng/vyurm/v12/i1/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :38
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024