Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2018, Volume 10, Issue 1, Pages 21–26
DOI: https://doi.org/10.14529/mmph180103
(Mi vyurm362)
 

Mathematics

Asymptotics of solution of the singularly perturbed Dirichlet problem with a weak critical point

D. A. Tursunov, K. Alymkulov, B. A. Azimov

Osh State University, Osh, Kyrgyzstan
References:
Abstract: The Dirichlet problem for a singularly perturbed linear homogeneous ordinary differential equation of second order with a nonsmooth coefficient in real axis is considered. Such problems can be seen in physics, engineering, continuum mechanics, hydrodynamics, etc. Object of the research is to develop the asymptotic technique of boundary functions of Vishik–Lusternik–Vasilyeva–Imanaliev for singularly perturbed differential equations in case when the corresponding non-perturbed equation has nonsmooth solution in the considered area. According to terminology of A. M. Ilyin, such problems are called bisingular. The possibility to use a generalized method of boundary functions for constructing a complete proportional asymptotic expansion of the boundary problem solution for a singularly perturbed linear ordinary differential equation of second order with a weak critical point or an integrable critical point is proved in the article. The constructed expansion of solution is asymptotic in the sense of Erdey. When constructing the proportional asymptotic expansion of the Dirichlet problem, the following methods were used: small parameter method, method of mathematical induction, classical method of boundary functions, and the principle of maximum. Using the principle of maximum, an assessment for the asymptotic expansion's remainder term is obtained, i.e. the proportional complete asymptotic expansion of the solution by small parameter is proved. A specific example is given.
Keywords: asymptotic solution, bisingular problem, Dirichlet problem, small parameter, boundary functions.
Received: 14.04.2017
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: D. A. Tursunov, K. Alymkulov, B. A. Azimov, “Asymptotics of solution of the singularly perturbed Dirichlet problem with a weak critical point”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:1 (2018), 21–26
Citation in format AMSBIB
\Bibitem{TurAlyAzi18}
\by D.~A.~Tursunov, K.~Alymkulov, B.~A.~Azimov
\paper Asymptotics of solution of the singularly perturbed Dirichlet problem with a weak critical point
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2018
\vol 10
\issue 1
\pages 21--26
\mathnet{http://mi.mathnet.ru/vyurm362}
\crossref{https://doi.org/10.14529/mmph180103}
\elib{https://elibrary.ru/item.asp?id=32323993}
Linking options:
  • https://www.mathnet.ru/eng/vyurm362
  • https://www.mathnet.ru/eng/vyurm/v10/i1/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :57
    References:46
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025