Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2016, Volume 8, Issue 3, Pages 31–51
DOI: https://doi.org/10.14529/mmph160304
(Mi vyurm307)
 

This article is cited in 18 scientific papers (total in 18 papers)

Mathematics

Nonclassical equations of mathematical physics. Phase space of semilinear Sobolev type equations

N. A. Manakova, G. A. Sviridyuk

South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: The article surveys the results concerning the morphology of phase spaces for semilinear Sobolev type equations. The first three paragraphs present specific boundary value problems for Sobolev type partial differential equations whose phase spaces are simple smooth Banach manifolds. The last section contains the mathematical models whose phase spaces lie on a smooth Banach manifolds with singularities. The purpose of this article is the formation of a basis for future studies of the morphology of phase spaces for semilinear Sobolev type equations. In addition, the article provides an explanation of the phenomenon of nonexistence of solutions to the Cauchy problem and the phenomenon of nonuniqueness of solutions to the Showalter–Sidorov problem for the semilinear Sobolev type equations.
Keywords: Sobolev type equations, phase space, the morphology of the phase space, Banach manifold, quasistationary trajectory, Showalter–Sidorov problem, Cauchy problem, $k$-assembly Whitney.
Received: 15.06.2016
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: N. A. Manakova, G. A. Sviridyuk, “Nonclassical equations of mathematical physics. Phase space of semilinear Sobolev type equations”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 31–51
Citation in format AMSBIB
\Bibitem{ManSvi16}
\by N.~A.~Manakova, G.~A.~Sviridyuk
\paper Nonclassical equations of mathematical physics. Phase space of semilinear Sobolev type equations
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2016
\vol 8
\issue 3
\pages 31--51
\mathnet{http://mi.mathnet.ru/vyurm307}
\crossref{https://doi.org/10.14529/mmph160304}
\elib{https://elibrary.ru/item.asp?id=26367651}
Linking options:
  • https://www.mathnet.ru/eng/vyurm307
  • https://www.mathnet.ru/eng/vyurm/v8/i3/p31
  • This publication is cited in the following 18 articles:
    1. N. G. Nikolaeva, O. V. Gavrilova, N. A. Manakova, “Investigation of the uniqueness solution of the Showalter–Sidorov problem for the mathematical Hoff model. Phase space morphology”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 17:1 (2024), 49–63  mathnet  crossref
    2. A. V. Buevich, M. A. Sagadeeva, S. A. Zagrebina, “Stability of a stationary solution to one class of non-autonomous Sobolev type equations”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 16:3 (2023), 65–73  mathnet  crossref
    3. A. V. Keller, “O napravleniyakh issledovanii uravnenii sobolevskogo tipa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 16:4 (2023), 5–32  mathnet  crossref
    4. N. A. Manakova, O. V. Gavrilova, K. V. Perevozchikova, “Polulineinye modeli sobolevskogo tipa. Needinstvennost resheniya zadachi Shouoltera – Sidorova”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 15:1 (2022), 84–100  mathnet  crossref
    5. K. V. Perevozhikova, N. A. Manakova, “Research of the optimal control problem for one mathematical model of the Sobolev type”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 14:4 (2021), 36–45  mathnet  crossref
    6. O. V. Gavrilova, “Chislennoe issledovanie odnoznachnoi razreshimosti zadachi Shouoltera – Sidorova dlya matematicheskoi modeli rasprostraneniya nervnykh impulsov v membranoi obolochke”, J. Comp. Eng. Math., 8:3 (2021), 32–48  mathnet  crossref
    7. K V Vasiuchkova, “Numerical study of the optimal control problem for one model of potential distribution in a crystalline semiconductor with the Showalter–Sidorov condition”, J. Phys.: Conf. Ser., 1847:1 (2021), 012024  crossref
    8. K. V. Perevozhikova, N. A. Manakova, A. S. Kuptsova, “Issledovanie razlichnykh tipov zadach upravleniya dlya odnoi modeli nelineinoi filtratsii”, J. Comp. Eng. Math., 8:4 (2021), 45–61  mathnet  crossref
    9. Ksenia V. Vasiuchkova, Natalia A. Manakova, Georgy A. Sviridyuk, Springer Proceedings in Mathematics & Statistics, 325, Semigroups of Operators – Theory and Applications, 2020, 363  crossref
    10. N. A. Manakova, K. V. Vasyuchkova, “Issledovanie odnoi matematicheskoi modeli raspredeleniya potentsialov v kristallicheskom poluprovodnike”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 12:2 (2019), 150–157  mathnet  crossref  elib
    11. K. V. Vasiuchkova, “Chislennoe issledovanie dlya zadachi startovogo upravleniya i finalnogo nablyudeniya v modeli raspredeleniya potentsialov v kristallicheskom poluprovodnike”, J. Comp. Eng. Math., 6:3 (2019), 54–68  mathnet  crossref
    12. O. V. Gavrilova, “Chislennoe issledovanie needinstvennosti resheniya zadachi Shouoltera – Sidorova dlya odnoi vyrozhdennoi matematicheskoi modeli avtokataliticheskoi reaktsii s diffuziei”, J. Comp. Eng. Math., 6:4 (2019), 3–17  mathnet  crossref
    13. O. V. Gavrilova, “Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor”, J. Comp. Eng. Math., 5:3 (2018), 24–37  mathnet  crossref  mathscinet  elib
    14. N. A. Manakova, O. V. Gavrilova, “About nonuniqueness of solutions of the Showalter–Sidorov problem for one mathematical model of nerve impulse spread in membrane”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:4 (2018), 161–168  mathnet  crossref  elib
    15. P. O. Moskvicheva, “A numerical experiment for the Barenblatt – Zheltov – Kochina equation in a bounded domain”, J. Comp. Eng. Math., 4:2 (2017), 41–48  mathnet  crossref  mathscinet  elib
    16. E. V. Bychkov, K. Yu. Kotlovanov, “Sobolev type equation in $(n, p)$-sectorial case”, J. Comp. Eng. Math., 4:2 (2017), 66–72  mathnet  crossref  mathscinet  elib
    17. A. A. Zamyshlyaeva, G. A. Sviridyuk, “Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016), 5–16  mathnet  crossref  elib
    18. N. A. Manakova, “On modified method of multistep coordinate descent for optimal control problem for semilinear Sobolev-type model”, J. Comp. Eng. Math., 3:4 (2016), 59–72  mathnet  crossref  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:603
    Full-text PDF :281
    References:79
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025