|
This article is cited in 2 scientific papers (total in 2 papers)
Calculation of eigenvalues of elliptic differential operators using the theory of regularized series
S. I. Kadchenko, O. A. Torshina Magnitogorsk State Technical University of G.I. Nosova, Magnitogorsk, Russian Federation
Abstract:
The study of the spectral properties of perturbed differential operators is one of the significant problems of the spectral theory. In order to solve this problem it is necessary to determine the asymptotic behavior of the spectrum. But when investigating the asymptotic behavior, the improvement of remainder term is often impossible. Moreover, even the separation of the second term of the asymptotics from the remainder term is impossible. As a consequence it is necessary to come over to the study of deeper spectrum structure. A standard research tool is the derivation of formulas for regularized traces. The author makes a calculation of four amendments of the perturbation theory with the help of the theory of regularized series, followed by the access to the eigenvalues of elliptic differential operators with potential on a projective plane. In this case the projective plane is identified with the sphere by comparing opposite points and poles puncturing.
Keywords:
differential operators, spectral theory, regularized traces, perturbation theory, eigenvalues.
Received: 10.12.2015
Citation:
S. I. Kadchenko, O. A. Torshina, “Calculation of eigenvalues of elliptic differential operators using the theory of regularized series”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:2 (2016), 36–43
Linking options:
https://www.mathnet.ru/eng/vyurm297 https://www.mathnet.ru/eng/vyurm/v8/i2/p36
|
Statistics & downloads: |
Abstract page: | 184 | Full-text PDF : | 58 | References: | 42 |
|