Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2014, Volume 6, Issue 1, Pages 10–14 (Mi vyurm2)  

Mathematics

Estimation of the size of domain of regular solution for a hyperbolic Monge–Ampere equation

D. G. Azov

South Ural State University
References:
Abstract: The article deals with a hyperbolic Monge–Ampere equation which has a $C^2$-regular solution in the circle. It provides sufficient conditions for the existence of estimate for the circle radius.
Keywords: surfaces with negative Gaussian curvature, hyperbolic Monge–Ampere equation, estimate of domain of regular solution.
Received: 04.09.2013
Document Type: Article
UDC: 514.772
Language: Russian
Citation: D. G. Azov, “Estimation of the size of domain of regular solution for a hyperbolic Monge–Ampere equation”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 6:1 (2014), 10–14
Citation in format AMSBIB
\Bibitem{Azo14}
\by D.~G.~Azov
\paper Estimation of the size of domain of regular solution for a hyperbolic Monge--Ampere equation
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2014
\vol 6
\issue 1
\pages 10--14
\mathnet{http://mi.mathnet.ru/vyurm2}
Linking options:
  • https://www.mathnet.ru/eng/vyurm2
  • https://www.mathnet.ru/eng/vyurm/v6/i1/p10
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024