Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, Issue 6(31), Pages 6–16
DOI: https://doi.org/10.15688/jvolsu1.2015.6.1
(Mi vvgum84)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

The positive solutions of quasilinear elliptic inequalities on Riemannian products

E. A. Mazepa

Volgograd State University
Full-text PDF (357 kB) Citations (1)
References:
Abstract: In this paper asymptotic behavior of positive solutions of quasilinear elliptic inequalities (1) on warped Riemannian products is researched. In particular, we find exact conditions under which Liouville theorems on no nontrivial solutions are satisfied, as well as the conditions of existence and cardinality of the set of positive solutions of the studied inequalities on the Riemannian manifolds. The results generalize similar results obtained previously by Naito. Y. and Usami H. for the Euclidean space $\mathrm{R}^n$ and results obtained previously by Losev A. and Mazepa E. on the model Riemannian manifolds.
We describe warped Riemannian products. Fix the origin $O \in \mathrm{R}^n$ and a smooth function $q_i > 0, i = 1, \ldots , k$ in the interval $(0, \infty)$. We define a Riemannian manifold $M$ as follows:
(1) the set of points $M$ is all $\mathrm{R}^n$;
(2) in coordinates $(r, {\theta}_1, \ldots , {\theta}_k)$ (where $r \in (0, \infty)$ and ${\theta}_i \in S^{n_i}$) Riemannian metric on $M \setminus \{ O\}$ defined as

$$ ds^2 = dr^2 + q_1^2 (r) d{{\theta}_1}^2 + \dots + q_k^2 (r) d{{\theta}_k}^2, $$

where $d {\theta}_i$ — the standard Riemannian metric on the sphere $S^{n_i}$, $n=n_1+\dots n_k+1$ — the dimension of $M$;
(3) Riemannian metric at $ O $ is a smooth continuation of the metric.
Will further assume that the function $ A $ in the inequality (1) satisfies the following conditions:
$$ \left\{ \begin{aligned} &A \in C(0, \infty), \quad A (p)> 0 \quad {\text for }\ p> 0, \\ &pA(| p |) \in C({\rm \bf R})\cap C^1(0, \infty), \\ &(p A (p)) '> 0 \; {\text for } \; p> 0, \\ \end{aligned} \right. $$

$ c (x)\equiv c(r) $ — continuous positive on $ \mathrm{R}_{+} $ function, and the function $ f \not\equiv 0 $ such that $ f(x, u) \in C (M)$, where $x=(r,\theta), f\not\equiv 0$ and $f(\cdot,0)=0$.
Introduce designations $\theta=(\theta_1,\dots,\theta_k)\ $, $K=S_{1}\times S_{2} \dots\times S_{k}\ $, $q(r)=\prod\limits_{i=1}^k q_i^{n_i}(r)$,
$$I(r)=\frac{1}{q(r)}\int\limits_{0}^{r}c(s)q(s)\,ds.$$

We also use the following assumption on the function $ f $:

$$ {\mathrm{(F)}} \quad \left\{ \begin{aligned} &{\text there \; are \; continuous \; functions \;} c(r)>0 \; {\text and \;} g(u)>0 \; {\text so \; that \;} \\ &g'(u)\geq 0, \; 0<c(r)g(u)\leq f(x,u) \; {\text for \;} u>0, \, r>0, \, \theta \in K, g(0)=0.\\ \end{aligned} \right. $$

First, consider the case where $ \lim\limits_ {p\rightarrow\infty} p A (p) <\infty. $
Theorem 1. Let $ \lim\limits_{p \rightarrow \infty}pA (p) <\infty$ and manifold $ M $ is such that $I(+0)=\lim\limits_{r \rightarrow +0}I (r)<\infty$ and $\limsup\limits_{r \rightarrow \infty} I (r) = \infty $. Then, if the condition (F), then positive integer solutions of the inequality (1) on $ M $ does not exist.
Next, consider the case where $ \lim\limits_{p \rightarrow \infty} pA (p) = \infty $. We prove a theorem on the non-existence of positive solutions of (1) and the conditions for the existence of a continuum of positive integer solutions of the inequality.
Keywords: quasilinear elliptic inequalities, asymptotic behavior, the theorem of Liouville type, warped Riemannian products, cardinality of the set of solutions.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02479-р_поволжье_а
Document Type: Article
UDC: 517.95
BBC: 22.161.6
Language: Russian
Citation: E. A. Mazepa, “The positive solutions of quasilinear elliptic inequalities on Riemannian products”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, no. 6(31), 6–16
Citation in format AMSBIB
\Bibitem{Maz15}
\by E.~A.~Mazepa
\paper The positive solutions of quasilinear elliptic inequalities on Riemannian products
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2015
\issue 6(31)
\pages 6--16
\mathnet{http://mi.mathnet.ru/vvgum84}
\crossref{https://doi.org/10.15688/jvolsu1.2015.6.1}
Linking options:
  • https://www.mathnet.ru/eng/vvgum84
  • https://www.mathnet.ru/eng/vvgum/y2015/i6/p6
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :51
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024