Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, Issue 5(30), Pages 6–24
DOI: https://doi.org/10.15688/jvolsu1.2015.5.1
(Mi vvgum76)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Alternating Beltrami equation and conformal multifolds

A. N. Kondrashov

Volgograd State University
Full-text PDF (440 kB) Citations (2)
References:
Abstract: The problem of the study of alternating Beltrami equation was posed by L.I. Volkovyskiǐ [5]. In [8] we proved that solutions of the alternating Beltrami equation of a certain structure ($(A,B)$-multifolds) are composition of conformal multifold and suitable homeomorphism. Thus, lines of change of orientation cannot be arbitrary, and only mapped by the specified homeomorphism in analytical arcs. Therefore, understanding of the structure of conformal multifolds is the key to understanding the structure of $(A, B)$-multifolds.
The main results of this work.
I. The theorem on removability of conformal multifolds cuts. This theorem is about the possibility of extending by continuity from the domain $D_{\Gamma_0} = D\setminus\bigcup_{\gamma\in\Gamma_0}|\gamma|$ to the whole domain $D$. Here $\Gamma_0$ is family of arcs which belong to the set change of type.
Theorem 3. Suppose that conditions are hold.
(A1) Functions $f_k(z)$ $(k = 1,2)$ are analytical ( antianalytical ) extended from each white ( black ) domain $D_i$ to a domain $\Omega\supset[D]$ and these extensions $f^i_k(z)$ $(i=1,\ldots,N)$, are homeomorphisms of $\Omega$.
(A2) $\bigcap_{i=1}^Nf^i_1(\Omega)\supset[f_1(D)]$.
Then the conformal multifold $f_2(z)$ in $D_{\Gamma_0}$ is also conformal multifold in $D$.
II. Description of a process of constructing conformal multifolds on analytical arcs of change type.
Keywords: alternating Beltrami equation, conformal multifold, black-white cut of domain, multidomain, continuous extending.
Document Type: Article
UDC: 514.752.44+514.772
BBC: (В)22.161.5
Language: Russian
Citation: A. N. Kondrashov, “Alternating Beltrami equation and conformal multifolds”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, no. 5(30), 6–24
Citation in format AMSBIB
\Bibitem{Kon15}
\by A.~N.~Kondrashov
\paper Alternating Beltrami equation and conformal multifolds
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2015
\issue 5(30)
\pages 6--24
\mathnet{http://mi.mathnet.ru/vvgum76}
\crossref{https://doi.org/10.15688/jvolsu1.2015.5.1}
Linking options:
  • https://www.mathnet.ru/eng/vvgum76
  • https://www.mathnet.ru/eng/vvgum/y2015/i5/p6
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024