|
Mathematics
Triangulation of spatial elementary domains
A. A. Klyachina, A. Yu. Bålånikinab a Volgograd State University
b Volgograd State University, Institute of Mathematics and Information Technologies
Abstract:
We consider a domain $\Omega \subset {\mathbf{R}}^3$ that has the form
$$
\Omega=\left\{(x,y,z): a<x<b,\ c<y<d,\ \varphi(x,y)<z<\psi(x,y)\right\},
$$
where $\varphi(x,y)$ and $\psi(x,y)$ are given functions in rectangle $[a,b]\times [c,d]$ which satisfy Lipschitz condition. Let $a=x_0<x_1<x_2<...<x_n=b$ be a partition of the segment $[a,b]$ and $c=y_0<y_1<x_2<...<y_m=d$ be a partition of the segment $[c,d]$. We put
$$
f_{\tau}(x,y)=\tau\psi(x,y)+(1-\tau)\varphi(x,y), \ \tau\in[0,1].
$$
We divide the segment $[0,1]$ by points $0=\tau_0<\tau_1<\tau_2<...<\tau_k=1$ and consider the grid in the domain $\Omega$ defined points
$$
A_{ijl}(x_i,y_j,z_{ijl})=(x_i,y_j,f_{\tau_l}(x_i,y_j)), \ i=0,...,n,\ j=0,...,m,\ l=0,...,k.
$$
In this paper we built a triangulation of the region $\Omega$ of nodes $A_ {ijl}$ such that a decrease in the fineness of the partition, and under certain conditions, the dihedral angles are separated from zero to some positive constant.
Keywords:
triangulation, tetrahedron, dihedral angle, elementary domain, partition of domain, Lipschitz condition.
Citation:
A. A. Klyachin, A. Yu. Bålånikina, “Triangulation of spatial elementary domains”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, no. 4(29), 6–12
Linking options:
https://www.mathnet.ru/eng/vvgum70 https://www.mathnet.ru/eng/vvgum/y2015/i4/p6
|
Statistics & downloads: |
Abstract page: | 150 | Full-text PDF : | 72 | References: | 66 |
|