Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, Issue 4(29), Pages 6–12
DOI: https://doi.org/10.15688/jvolsu1.2015.4.1
(Mi vvgum70)
 

Mathematics

Triangulation of spatial elementary domains

A. A. Klyachina, A. Yu. Bålånikinab

a Volgograd State University
b Volgograd State University, Institute of Mathematics and Information Technologies
References:
Abstract: We consider a domain $\Omega \subset {\mathbf{R}}^3$ that has the form
$$ \Omega=\left\{(x,y,z): a<x<b,\ c<y<d,\ \varphi(x,y)<z<\psi(x,y)\right\}, $$
where $\varphi(x,y)$ and $\psi(x,y)$ are given functions in rectangle $[a,b]\times [c,d]$ which satisfy Lipschitz condition. Let $a=x_0<x_1<x_2<...<x_n=b$ be a partition of the segment $[a,b]$ and $c=y_0<y_1<x_2<...<y_m=d$ be a partition of the segment $[c,d]$. We put
$$ f_{\tau}(x,y)=\tau\psi(x,y)+(1-\tau)\varphi(x,y), \ \tau\in[0,1]. $$
We divide the segment $[0,1]$ by points $0=\tau_0<\tau_1<\tau_2<...<\tau_k=1$ and consider the grid in the domain $\Omega$ defined points
$$ A_{ijl}(x_i,y_j,z_{ijl})=(x_i,y_j,f_{\tau_l}(x_i,y_j)), \ i=0,...,n,\ j=0,...,m,\ l=0,...,k. $$
In this paper we built a triangulation of the region $\Omega$ of nodes $A_ {ijl}$ such that a decrease in the fineness of the partition, and under certain conditions, the dihedral angles are separated from zero to some positive constant.
Keywords: triangulation, tetrahedron, dihedral angle, elementary domain, partition of domain, Lipschitz condition.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02517-ð_ïîâîëæüå_à
Document Type: Article
UDC: 517.951, 519.632
BBC: 22.161, 22.19
Language: Russian
Citation: A. A. Klyachin, A. Yu. Bålånikina, “Triangulation of spatial elementary domains”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, no. 4(29), 6–12
Citation in format AMSBIB
\Bibitem{KlyBål15}
\by A.~A.~Klyachin, A.~Yu.~Bålånikina
\paper Triangulation of spatial elementary domains
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2015
\issue 4(29)
\pages 6--12
\mathnet{http://mi.mathnet.ru/vvgum70}
\crossref{https://doi.org/10.15688/jvolsu1.2015.4.1}
Linking options:
  • https://www.mathnet.ru/eng/vvgum70
  • https://www.mathnet.ru/eng/vvgum/y2015/i4/p6
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :72
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024