Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, Issue 3(22), Pages 61–65 (Mi vvgum55)  

Mathematics

A question of Ahlfors

Samuel L. Krushkalab

a Bar-Ilan University
b University of Virginia
References:
Abstract: In 1963, Ahlfors posed in [1] (and repeated in his book [2]) the following question which gave rise to various investigations of quasiconformal extendibility of univalent functions.
Question. Let $f$ be a conformal map of the disk (or half-plane) onto a domain with quasiconformal boundary (quasicircle). How can this map be characterized?
He conjectured that the characterization should be in analytic properties of the logarithmic derivative $\log f^\prime = f^{\prime\prime}/f^\prime$, and indeed, many results on quasiconformal extensions of holomorphic maps have been established using $f^{\prime\prime}/f^\prime$ and other invariants (see, e.g., the survey [9] and the references there).
This question relates to another still not solved problem in geometric complex analysis:
To what extent does the Riemann mapping function $f$ of a Jordan domain $D \subset \hat {\Bbb C}$ determine the geometric and conformal invariants (characteristics) of complementary domain $D^* = \hat {\Bbb C} \setminus \overline{D}$?
The purpose of this paper is to provide a qualitative answer to these questions, which discovers how the inner features of biholomorphy determine the admissible bounds for quasiconformal dilatations and determine the Kobayashi distance for the corresponding points in the universal Teichmüller space.
Keywords: the Grunsky inequalities, Beltrami coefficient, universal Teichmüller space, Teichmüller metric, Kobayashi metric, Schwarzian derivative, Fredholm eigenvalues.
Document Type: Article
UDC: 517.547
BBC: 22.161.5
Language: English
Citation: Samuel L. Krushkal, “A question of Ahlfors”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 3(22), 61–65
Citation in format AMSBIB
\Bibitem{Kru14}
\by Samuel~L.~Krushkal
\paper A question of Ahlfors
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2014
\issue 3(22)
\pages 61--65
\mathnet{http://mi.mathnet.ru/vvgum55}
Linking options:
  • https://www.mathnet.ru/eng/vvgum55
  • https://www.mathnet.ru/eng/vvgum/y2014/i3/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:139
    Full-text PDF :60
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025