Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, Issue 3(22), Pages 13–22 (Mi vvgum50)  

Mathematics

Harmonic functions on cones of model manifolds

Yu. V. Goncharov, A. G. Losev, A. V. Svetlov

Volgograd State University
References:
Abstract: The paper deals with harmonic functions on cones of model manifolds. $M$ is called a cone of model manifold, if $M=B\cup D$, where $B$ is a non-empty precompact set and $D$ is isometric to the product $[r_0,+\infty)\times \Omega$ ($r_0>0$, $\Omega$ is a compact Riemannian manifold with non-empty smooth boundary) with the metric
$$ds^2=dr^2+g^2(r)d\theta^2.$$
Here $g(r)$ is a positive smooth on $[r_0,+\infty)$ function, and $d\theta$ is a metric on $\Omega$. Note if $\Omega$ is a compact Riemannian manifold with no boundary, we have just a definition of model manifold.
Let's
$$H_0(M)=\{u: \Delta u=0, u|_{\partial M}=0\},$$
and
$$J=\int_{r_0}^\infty g^{1-n}(t)\left(\int_{r_0}^t g^{n-3}(\xi)d\xi\right)dt,$$
where $r_0={\rm const}>0,\ n=\dim M$.
The main results of the paper are following.
Theorem 1. Let's manifold $M$ has $J=\infty$. Then any bounded function $u\in H_0(M)$ is equal to zero identically.
Theorem 2. Let's manifold $M$ has $J=\infty$. Then for cone of positive harmonic functions from class $H_0(M)$ the dimension is equal to 1.
Keywords: Laplace–Beltrami equation, Liouville type theorems, model Riemannian manifolds, cones of model manifolds, dimension of solutions' space.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-97038
Document Type: Article
UDC: 517.95
BBC: 22.161.6
Language: Russian
Citation: Yu. V. Goncharov, A. G. Losev, A. V. Svetlov, “Harmonic functions on cones of model manifolds”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 3(22), 13–22
Citation in format AMSBIB
\Bibitem{GonLosSve14}
\by Yu.~V.~Goncharov, A.~G.~Losev, A.~V.~Svetlov
\paper Harmonic functions on cones of model manifolds
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2014
\issue 3(22)
\pages 13--22
\mathnet{http://mi.mathnet.ru/vvgum50}
Linking options:
  • https://www.mathnet.ru/eng/vvgum50
  • https://www.mathnet.ru/eng/vvgum/y2014/i3/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024