Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, Issue 2(21), Pages 6–16 (Mi vvgum41)  

Mathematics

Some properties of normal sections and geodesics on cyclic recurrent submanifolds

I. I. Bodrenko

Volgograd State University
References:
Abstract: Let $F^{n}$ be $n$-dimensional $(n \geq 2)$ submanifold in $(n+p)$-dimensional Euclidean space $E^{n+p}$ $(p \geq 1)$. Let $x$ be arbitrary point $F^n$, $T_xF^n$ be tangent space to $F^n$ at the point $x$. Let $\gamma_g(x, t)$ be a geodesic on $F^n$ passing through the point $x\in F^n$ in the direction $t\in T_x F^n$. Denote by $k_g (x, t)$ and $\varkappa_g (x, t)$ curvature and torsion of geodesic $\gamma_g (x, t)\subset E^{n+p}$, respectively, calculated for point $x$.
Torsion $\varkappa_g(x, t)$ of geodesic $\gamma_g (x, t)$ is called geodesic torsion of submanifold $F^n\subset E^{n+p}$ at the point $x$ in the direction $t$.
Let $\gamma_N(x, t)$ be a normal section of submanifold $F^n\subset E^{n+p}$ at the point $x\in F^n$ in the direction $t\in T_xF^n$. Denote by $k_N (x, t)$ and $\varkappa_N (x, t)$ curvature and torsion of normal section $\gamma_N (x, t)\subset E^{n+p}$, respectively, calculated for point $x$.
Denote by $b$ the second fundamental form of $F^n$, by $\overline\nabla$ the connection of van der Waerden — Bortolotti.
The fundamental form $b\not=0$ is called cyclic recurrent if on $F^n$ there exists $1$-form $\mu$ such that
$$ \overline\nabla_X b(Y,Z)= \mu(X)b(Y,Z) + \mu(Y)b(Z,X)+ \mu(Z)b(X,Y) $$
for all vector fields $X, Y, Z$ tangent to $F^n$.
Submanifold $F^n\subset E^{n+p}$ with cyclic recurrent the second fundamental form $b\ne 0$ is called cyclic recurrent submanifold.
The properties of normal sections $\gamma_N(x, t)$ and geodesics $\gamma_g(x, t)$ on cyclic recurrent submanifolds $F^n\subset E^{n+p}$ are studied in this article. The conditions for which cyclic recurrent submanifolds $F^n \subset E^{n+p}$ have zero geodesic torsion $\varkappa_g(x, t)\equiv 0$ at every point $x\in F^n$ in every direction $t\in T_xF^n$ are derived in this article.
Denote by ${\mathcal R}_0$ a set of submanifolds $F^n\subset E^{n+p}$, on which
$$ k_g (x,t)\ne 0, \quad \varkappa_g(x,t)\equiv 0, \quad \forall x\in F^n, \quad \forall t\in T_xF^n. $$

The following theorem is proved in this article.
Let $F^n$ be a cyclic recurrent submanifold in $E^{n+p}$ with no asymptotic directions. Then $F^n$ belongs to the set ${\mathcal R}_0$ if and only if the following condition holds:
$$ k_N(x, t) = k(x), \quad \forall x\in F^n, \quad \forall t\in T_xF^n. $$
Keywords: the second fundamental form, cyclic recurrent submanifold, geodesic torsion, normal section, normal curvature, normal torsion, connection of van der Waerden — Bortolotti.
Document Type: Article
UDC: 514.75
BBC: 22.151
Language: Russian
Citation: I. I. Bodrenko, “Some properties of normal sections and geodesics on cyclic recurrent submanifolds”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 2(21), 6–16
Citation in format AMSBIB
\Bibitem{Bod14}
\by I.~I.~Bodrenko
\paper Some properties of normal sections and geodesics
on cyclic recurrent submanifolds
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2014
\issue 2(21)
\pages 6--16
\mathnet{http://mi.mathnet.ru/vvgum41}
Linking options:
  • https://www.mathnet.ru/eng/vvgum41
  • https://www.mathnet.ru/eng/vvgum/y2014/i2/p6
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :51
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024