Mathematical Physics and Computer Simulation
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical Physics and Computer Simulation, 2021, Volume 24, Issue 3, Pages 5–17
DOI: https://doi.org/10.15688/mpcm.jvolsu.2021.3.1
(Mi vvgum309)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics and mechanics

Bounded solutions of the stationary Schrödinger equation with finite energy integral on model manifolds

A. G. Losev, V. V. Filatov

Volgograd State University
Full-text PDF (349 kB) Citations (1)
Abstract: Conditions for the existence of nontrivial bounded solutions of the stationary Schrodinger equation with a finite energy integral on model varieties are obtained. A condition for the existence of nontrivial bounded solutions with a finite integral of energy in the exterior of a compactum on arbitrary Riemannian manifolds is also obtained. Let $D=(0;+\infty)\times S,$ where $S$ is compact Riemannian manifold. Metrics on $D$ is following
$$ds^2=dr^2+g^2(r)d\theta^2.$$
Where $g(r)$ is positive, smooth on $(0,+\infty)$ function, $d\theta^2$ is metrics on $S.$ We will study solutions of the stationary Schrodinger equation
$$\Delta u-c(r)u=0$$
on $D$. Let $r_0=\mathrm{const} >0, n=\dim D$.
Theorem 1.
  • If one of the following conditions is fulfilled on $ D $:
    $ \mu) $ $ R <\infty $; $ \eta) $ $ R = \infty, $ $ K = \infty $; $ \xi) $ $ J = \infty, $ $ K <\infty $ then the Liouville function of the end $ D $ has a finite energy integral.
  • If one of the conditions
    $ \omega) $ $ R = \infty $, $ I <\infty; $ $ \rho) $ $ R = \infty, $ $ I = \infty, $ $ J <\infty $ then The Liouville Function of end $ D $ has a divergent energy integral.
Theorem 2. On an arbitrary Riemannian manifold $ M $, the convergence of the energy integral of the Liouville function of the exterior of the compact (Liouville function of the end) implies the convergence of the energy integral of the Liouville function.
Keywords: energy integral, stationary Schrödinger equation, Liouville function, massive sets, Riemannian manifolds.
Funding agency Grant number
Russian Foundation for Basic Research 20-31-90110
Received: 25.05.2021
Document Type: Article
UDC: 517.956.2
BBC: 22.161.6
Language: Russian
Citation: A. G. Losev, V. V. Filatov, “Bounded solutions of the stationary Schrödinger equation with finite energy integral on model manifolds”, Mathematical Physics and Computer Simulation, 24:3 (2021), 5–17
Citation in format AMSBIB
\Bibitem{LosFil21}
\by A.~G.~Losev, V.~V.~Filatov
\paper Bounded solutions of the stationary Schr\"{o}dinger equation with finite energy integral on model manifolds
\jour Mathematical Physics and Computer Simulation
\yr 2021
\vol 24
\issue 3
\pages 5--17
\mathnet{http://mi.mathnet.ru/vvgum309}
\crossref{https://doi.org/10.15688/mpcm.jvolsu.2021.3.1}
Linking options:
  • https://www.mathnet.ru/eng/vvgum309
  • https://www.mathnet.ru/eng/vvgum/v24/i3/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :116
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024