Mathematical Physics and Computer Simulation
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical Physics and Computer Simulation, 2020, Volume 23, Issue 3, Pages 76–89
DOI: https://doi.org/10.15688/mpcm.jvolsu.2020.3.7
(Mi vvgum290)
 

Mathematics and mechanics

Spectral analysis of an integro-differential operator with a degenerate kernel

A. N. Shelkovoy

Voronezh State Technical University
Abstract: We consider operator $\mathcal{L}$ acting in the Hilbert space $L_2[0,1]$ defined by the integro-differential expression $(\mathcal{L}x)(t)=-\ddot {x}(t)-\int\limits_{0}^{1}K(t, s)x(s)ds$ with the domain $D(\mathcal{L}) = \{x\in W_2^2[0,1], ~ x(0) = x(1) = 0\}$, where $W_2^2[0,1]$ is the Sobolev space $\{x\in L_2[0,1] :x'$ is absolutely continuous, $x''\in L_2[0,1]\}$, and the boundary conditions $x(0) = x(1) = 0$.
To study spectral properties of the operator $\mathcal{L}$, it is represented in the form $(\mathcal{L}x)(t) = (Ax)(t) - (Bx)(t)$, where with $(Ax)(t) = -\ddot {x}(t),~(Bx)(t) = \int\limits_{0}^{1}K(t, s)x(s)ds$. Operator $A$ is considered an unperturbed operator, $B$ is a perturbation, which is an integral operator with a degenerate kernel $K(t, s) = \sum\limits_{i = 1}^{k}p_i(t)q_i(s),~p_i, q_i\in L_2[0,1]$.
As a method of studying spectral properties of the operator $A - B$ the method of similar operators serves.
One of the main results is
Theorem 3. Let for any functions $p_i,~q_i,~i = \overline{1, k}$, belonging to a Hilbert space $L_2[0,1]$, and for the sequences $\gamma_1, \gamma_2\colon \mathbb{N}\to \mathbb{R}_+ = [0,\infty)$, defined by formulas
$$\gamma_1(n) = \frac{1}{2\pi^2}\Biggl(\sum\limits_{\substack{m\ge 1 \\ m\ne n}}\frac{n^{2}\Biggl(\sup\limits_{j}\frac{\sum\limits_{i = 1}^{k}q_{ij}^{\sin}p_{im}^{\sin}}{j}\Biggr)^2 + m^{2}\Biggl(\sup\limits_{j}\frac{|\sum\limits_{i = 1}^{k}q_{ij}^{\sin}p_{in}^{\sin}|}{j}\Biggr)^2}{|n^2-m^2|^2}\Biggr)^{\frac{1}{2}} < \infty,$$

$$\gamma_2(n) = \frac{1}{2\pi^2}\max\Biggl\{\frac{n\sup\limits_{j}\frac{|\sum\limits_{i = 1}^{k}q_{ij}^{\sin}p_{in}^{\sin}|}{j}}{2n-1},~\sum\limits_{\substack{m\ge 1 \\ m\ne n}}\frac{m\sup\limits_{j}\frac{|\sum\limits_{i = 1}^{k}q_{ij}^{\sin}p_{im}^{\sin}|}{j}}{|n^2 -m^2|}\Biggr\} < \infty,$$
where $p_{ij}^{\sin} = 2\int\limits_0^{1}p_i(t)\sin{\pi{jt}}dt,~q_{ij}^{\sin} = 2\int\limits_0^{1}q_i(t)\sin{\pi{js}}ds$ are the expansion coefficients of functions $p_i$ and $q_i$ in the Fourier series in sines, the conditions are satisfied: $\lim\limits_{n\to \infty} \gamma_1(n) = 0, \lim\limits_{n\to \infty} \gamma_2(n) = 0$. Then the spectrum $\sigma(A - B)$ of the operator $A - B$ can be represented in the form $\sigma(A - B) = \widetilde{\sigma}_m\bigcup\bigg(\bigcup\limits_{n\ge m+1}\widetilde{\sigma}_n\bigg)$, where $\widetilde{\sigma}_n,~n\ge m+1$, are single-point sets, and $\widetilde{\sigma}_m$ are finite sets with the number of points not exceeding $m$. Moreover, for their eigenvalues $\widetilde{\lambda}_{n}$ and eigenfunctions $\widetilde{e}_{n}$ of operator (1), we have the estimates:
$$\Biggl|\widetilde{\lambda}_{n} - \pi^{2}n^2 - \frac{1}{2}\sum\limits_{i = 1}^{k}q_{in}^{\sin}p_{in}^{\sin} + \frac{1}{4\pi^2}\sum\limits_{\substack{m\ge 1 \\ m\ne n}}\frac{\sum\limits_{i = 1}^{k}q_{in}^{\sin}p_{im}^{\sin}\sum\limits_{i = 1}^{k}q_{im}^{\sin}p_{in}^{\sin}}{n^2-m^2}\Biggr| ~ \le$$

$$\le~\mathrm{const}\cdot{n}\cdot\sup\limits_{j}\Biggl|\sum\limits_{i = 1}^k\frac{q_{ij}^{\sin}}{j}p_{in}^{\sin}\Biggr|\cdot\gamma_2(n),$$

$$\Biggl(\int\limits_0^{1}\Biggl|\widetilde{e}_{n}(t) - \sqrt{2}\sin{\pi{nt}} + \frac{\sqrt{2}}{2\pi^2}\sum\limits_{m = 1}^{\infty}\frac{\sum\limits_{i = 1}^{k}q_{in}^{\sin}p_{im}^{\sin}}{n^2-m^2}\sin{\pi{mt}}\Biggr|^2dt\Biggr)^{\frac{1}{2}}~\le$$

$$\le~\mathrm{const}\cdot{n}\cdot\Biggl(\sum\limits_{m = 1}^{\infty}\frac{\Biggl(\sup\limits_{j}\Biggl|\sum\limits_{i = 1}^k\frac{q_{ij}^{\sin}}{j}p_{in}^{\sin}\Biggr|\Biggr)^2}{|n^2-m^2|^2}\Biggr)^{\frac{1}{2}}.$$
Keywords: eigenvalues, operator spectrum, integro-differential operator of the second order, spectrum asymptotic, method of similar operators.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00732
Received: 28.03.2020
Document Type: Article
UDC: 517.9
BBC: 22.161
Language: Russian
Citation: A. N. Shelkovoy, “Spectral analysis of an integro-differential operator with a degenerate kernel”, Mathematical Physics and Computer Simulation, 23:3 (2020), 76–89
Citation in format AMSBIB
\Bibitem{She20}
\by A.~N.~Shelkovoy
\paper Spectral analysis of an integro-differential operator with a degenerate kernel
\jour Mathematical Physics and Computer Simulation
\yr 2020
\vol 23
\issue 3
\pages 76--89
\mathnet{http://mi.mathnet.ru/vvgum290}
\crossref{https://doi.org/10.15688/mpcm.jvolsu.2020.3.7}
Linking options:
  • https://www.mathnet.ru/eng/vvgum290
  • https://www.mathnet.ru/eng/vvgum/v23/i3/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024