Mathematical Physics and Computer Simulation
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical Physics and Computer Simulation, 2019, Volume 22, Issue 3, Pages 26–31
DOI: https://doi.org/10.15688/mpcm.jvolsu.2019.3.2
(Mi vvgum259)
 

Mathematics and mechanics

On the constuction of subcodes of low weight of a rational Goppa code

Yu. S. Kasatkina, A. S. Kasatkina

RANEPA (west branch)
Abstract: We study а class of rational Goppa codes which is closely related to classical Goppa codes. Classical Goppa codes were described by V.D. Goppa as a new class of error-correcting codes in 1970. At first, it was proposed a class of binary linear codes. The main idea was to set correspondence between the original set of binary vectors and the set of rational functions. One year later V.D. Goppa summarized the results and described the method of construction of $q$-ary error-correcting codes.
We consider a code defined by the generator matrix
$$ \begin{pmatrix} g(\alpha _1 )^{ - 1}& g(\alpha _2 )^{ - 1} &\ldots &g(\alpha _n )^{ - 1}\\ \alpha _1 g(\alpha _1 )^{ - 1}& \alpha _2 g(\alpha _2 )^{ - 1} &\ldots & \alpha _n g(\alpha _n )^{ - 1}\\ \vdots& \vdots & {} & \vdots\\ \alpha _1 ^{t - 1} g(\alpha _1 )^{ - 1}& \alpha _2 ^{t - 1} g(\alpha _2 )^{ - 1} &\ldots & \alpha _n ^{t - 1} g(\alpha _n )^{ - 1} \end{pmatrix} $$

Elements $\alpha _1 ,...,\alpha _n$ are elements of the finite field $ F_{q^m }$. We define a set $L = \{ \alpha _1 ,...,\alpha _n \} \subseteq F_{q^m } ,\quad \left| L \right| = n.$ Polynomial $g(x) \in F_{q^m }[x]$ is a polynomial of degree $t$ such that $1\leq t \leq n-1$ and $g(\alpha _i ) \ne 0$ for all elements $ \alpha _i \in L$.
Let $G_0$ be the zero divisor of polynomial $g(x)$ in the divisor group of the rational function field $ F_{q^m }(x)$. Let denote $P_i$ the zero of $(x-\alpha _i)$ for all $ \alpha _i \in L$. We define the divisor $D_L $ as the sum of places of degree one
$D_L = P_1 + P_2 + ... + P_n$.
Thus foregoing matrix generate a rational Goppa code $C_L (D_L,G_0-P_\infty)$.
In this paper, we study structure of subcodes of low weight of such rational Goppa codes. We analyze, in the term of divisors, construction of subcodes of low weight. Our analysis is based on the knowledge of weight hierarchy of codes. The weight hierarchy of code $C_L (D_L,G_0-P_\infty)$ is defined by formula
$d_r(C_L (D_L,G_0-P_\infty))=n-k+r$, где $1\leq r \leq k$.

Let $D_r$ denote the r-dimensional subcode of code $C_L (D_L,G_0-P_\infty)$ of low weight. Elements $f_1,…, f_r$ of vector space $L(D_L,G_0-P_\infty)$ correspond to elements $ev_D(f_1),…, ev_D(f_r)$ of basis of code $D_r$. Condition
$|\chi (D_r )| = d_r (C_L (D_L,G_0-P_\infty))$
determines the structure of the principal divisors $(f_i)$
$(f_i ) = D + B_i - (G_0 - P_\infty )$, $ 1\leq i \leq r$.
At the same time, the divisors $D$ and $B_i$ satisfy the requirements
$ 0 \le D \le D_L$, $\deg D = t - r$
and
$B_i \ge 0$, $\deg B_i = r - 1$ для $ 1\leq i \leq r$.
Keywords: geometric Goppa code, generalized Hemming weight of thecode, weight hierarchy, subcode of low weight.
Received: 01.03.2019
Document Type: Article
UDC: 512.77
BBC: 22.147
Language: Russian
Citation: Yu. S. Kasatkina, A. S. Kasatkina, “On the constuction of subcodes of low weight of a rational Goppa code”, Mathematical Physics and Computer Simulation, 22:3 (2019), 26–31
Citation in format AMSBIB
\Bibitem{KasKas19}
\by Yu.~S.~Kasatkina, A.~S.~Kasatkina
\paper On the constuction of subcodes of low weight of a rational Goppa code
\jour Mathematical Physics and Computer Simulation
\yr 2019
\vol 22
\issue 3
\pages 26--31
\mathnet{http://mi.mathnet.ru/vvgum259}
\crossref{https://doi.org/10.15688/mpcm.jvolsu.2019.3.2}
Linking options:
  • https://www.mathnet.ru/eng/vvgum259
  • https://www.mathnet.ru/eng/vvgum/v22/i3/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024