Mathematical Physics and Computer Simulation
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical Physics and Computer Simulation, 2019, Volume 22, Issue 1, Pages 24–34
DOI: https://doi.org/10.15688/mpcm.jvolsu.2019.1.3
(Mi vvgum247)
 

Mathematics and mechanics

On approximation of the functions of two variables by some Fourier integrals

Yu. Kh. Khasanov

Russian-Tajik Slavonic University
Abstract: This paper we studies some issues on the deviation of the functions of two variables $f(x,y)$ defined on the whole two-dimensional space from integral mean values of their Fourier transforms in the metric of the space $L_p (R^2 )\,\,\,(1\leq p < \infty)$.
Let $L_p (R^2 )\,\,\,(1\leq p < \infty)$ stand for the space of measurable functions $f(x,y)$ such that
$$ \|f(x,y)\|_{L_p}=\left\{\int\limits_{-\infty}^\infty\int\limits_{-\infty}^\infty|f(x,y)|^pdxdy\right\}^{\frac{1}{p}}<\infty\,\,\,(1\leq p<\infty), $$

$$ \|f(x,y)\|_{L_\infty}=vrai\sup_{x,y}|f(x,y)|<\infty, $$
and almost everywhere there exists the Fourier transform
$$ F(t,z)=\frac{1}{2\pi}\int\limits_{-\infty}^\infty\int\limits_{-\infty}^\infty f(u,v) \exp(-i(tu+zv))dudv, $$
where
$$ F(t,z)\in L_q(R^2)\,\,\,(\frac{1}{p}+\frac{1}{q}=1). $$
For any $\sigma>0$ we consider
$$ S_{\sigma,\sigma}(f;x,y)=\int\limits_{-\sigma}^\sigma\int\limits_{-\sigma}^\sigma F(t,z) \exp(i(tx+zy))dtdz= $$

$$ =\int\limits_0^\sigma\left\{\int\limits_{-u}^uA(t,u)dt+\int\limits_{-u}^uA(t,-u)dt+\int\limits_{-u}^uA(u,z)dz+\int\limits_{-u}^uA(-u,z)dz\right\}du= $$

$$ =\int\limits_0^\sigma S_{u,u}^*(f;x,y)du, $$
where $A(t,z)=F(t,z)\exp(i(tx+zy))$.
This paper estimates the value
$$ R_{\sigma,r}(f)_{L_p}=\|f(x,y)-U_{\sigma,r}(f;x,y)\|_{L_p}, $$
where
$$ U_{\sigma,r}(f;x,y)=\int\limits_0^\sigma \left(1-\frac{u^r}{\sigma^r}\right) S_{u,u}^*(f;x,y)du. $$

Theorem 1. If $f(x,y)\in L_p(R^2)\,\,\,(1<p\leq 2)$, then the following bound is valid
$$ R_{\sigma,r}(f)_{L_p}\leq C_{p,r}\left\{\omega_r^{(1)}(f;\frac{1}{\sigma})_{L_p}+\omega_r^{(2)}(f;\frac{1}{\sigma})_{L_p}\right\}, $$
where
$$ \omega_r^{(1)}(f;u)_{L_p}=\sup_{|h|\leq u}\|\Delta_{x,h}^rf\|_{L_p}= \sup_{|h|\leq u}\left\|\sum_{\nu=0}^r(-1)^{r-\nu}(_\nu^r)f(x+\nu h,y)\right\|_{L_p}, $$

$$ \omega_r^{(2)}(f;u)_{L_p}=\sup_{|h|\leq u}\|\Delta_{h,y}^rf\|_{L_p}= \sup_{|h|\leq u}\left\|\sum_{\nu=0}^r(-1)^{r-\nu}(_\nu^r)f(x,y+\nu h)\right\|_{L_p}, $$
$C_{p,r}$ is a constant value that depends only on $p$ and $r$.
Theorem 2. Under the assumptions of Theorem 1 with $1<p\leq 2$ the following bound is valid
$$ \omega_r^{(\nu)}(f;\frac{1}{\sigma})_{L_p}\leq M_{p,r}R_{\sigma,r}(f)_{L_p}\,\,\,(\nu=1,2), $$
where the constant $M_{p,r}$ depends only on $p$ and $r$.
Keywords: function of two variables, Fourier series, Fourier transformation, partial sums of Fourier series, integral mean values, entire function of finite order, best approximation, modulus of continuity.
Document Type: Article
UDC: 517.518.68
BBC: 22.161.5
Language: Russian
Citation: Yu. Kh. Khasanov, “On approximation of the functions of two variables by some Fourier integrals”, Mathematical Physics and Computer Simulation, 22:1 (2019), 24–34
Citation in format AMSBIB
\Bibitem{Kha19}
\by Yu.~Kh.~Khasanov
\paper On approximation of the functions of two variables by some Fourier integrals
\jour Mathematical Physics and Computer Simulation
\yr 2019
\vol 22
\issue 1
\pages 24--34
\mathnet{http://mi.mathnet.ru/vvgum247}
\crossref{https://doi.org/10.15688/mpcm.jvolsu.2019.1.3}
Linking options:
  • https://www.mathnet.ru/eng/vvgum247
  • https://www.mathnet.ru/eng/vvgum/v22/i1/p24
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024