Mathematical Physics and Computer Simulation
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical Physics and Computer Simulation, 2018, Volume 21, Issue 4, Pages 18–33
DOI: https://doi.org/10.15688/mpcm.jvolsu.2018.4.2
(Mi vvgum240)
 

Mathematics and mechanics

Spectral properties of second order differential operator determined by non-local boundary conditions

A. N. Shelkovoy

Voronezh State Technical University
References:
Abstract: In this work we study the spectral properties of the operator acting in the Hilbert space $L_2[0,2\pi]$ defined by the differential expression $\mathcal{L}y=-\ddot {y}+y$ and nonlocal boundary conditions
$$ y(0)=y(2\pi)+\int\limits_0^{2\pi} a_0(t)y(t)dt,\quad
\dot {y}(0)=\dot {y}(2\pi)+\int\limits_0^{2\pi} a_1(t)y(t)dt. $$
Here $a_0$ and $a_1$ are functions from $L_2[0,2\pi]$.
To investigate spectrum of the operator, $\mathcal{L}$ is used adjoint of the operator $\mathcal{L}^*$ one defined by the differential expression $(\mathcal{L}^{*}x)(t) = (Ax)(t) - (Bx)(t)$ and boundary conditions $ x(0) = x(2\pi), ~ \dot {x}(0) = \dot {x}(2\pi), $ with $A$ generated by the differential expression $Ax = -\ddot {x} + x$ with the domain
$$D(A) = \{x\in L_2[0,2\pi] : x, ~ \dot {x} \in C[0,2\pi], ~ \ddot {x} \in L_2[0,2\pi],$$

$$x(0) = x(2\pi), ~ \dot {x}(0) = \dot {x}(2\pi)\},$$
and $(Bx)(t) = \dot {x}(2\pi)a_0(t)-x(2\pi)a_1(t), ~ t\in [0,2\pi], ~ x\in D(A)$.
As a method of studying the spectral properties of the operator $A - B$ the similar operators method serves.
One of the main results is the following theorem.
Theorem 3. Let functions $a_0$ and $a_1$ of bounded variation on a segment $[0,2\pi]$ and sequences $\gamma_1, \gamma_2\colon \mathbb{N}\to \mathbb{R}_+ = [0,\infty)$ defined by formulas:
$$ \gamma_1(n) = \Biggl(\frac{\alpha_0^{2}n^{4} + 1}{n^6}~+~\frac{4}{n^2}\sum\limits_{\substack{m\ge 1 \\ m\ne n}}\frac{n^4 + m^4}{m^2|n^2 -m^2|^2}\Biggr)^{1/2} < \infty, $$

$$ \gamma_2(n) = 2\max\Biggl\{\frac{1}{2n - 1}; \frac{|a_0^0|}{4n^2} + \sum\limits_{\substack{m\ge 1 \\ m\ne n}}\frac{1}{|n^2 -m^2|}\Biggr\} < \infty $$
and
$$ \alpha_0 = \sqrt{\frac{|a_0^0|^2 + |a_1^0|^2}{2}},\quad a_0^0 = \frac{1}{\pi}\int\limits_0^{2\pi}a_0(t)dt, \quad a_1^0 = \frac{1}{\pi}\int\limits_0^{2\pi}a_1(t)dt. $$
Let conditions $\lim\limits_{n\to \infty} \gamma_1(n) = 0, \lim\limits_{n\to \infty} \gamma_2(n) = 0$ hold true. Then the spectrum $\sigma(A - B)$ of operator $A - B$ can be represented as $\sigma(A - B) = \bigcup\limits_{n \ge 1}\widetilde {\sigma}_n$ where $\widetilde {\sigma}_n, ~ n \ge 1$, — no more than set of two points. Provided that the estimates:
$$\Biggl|\widetilde{\lambda}_{n} - (n^2 + 1) ~ + ~ \frac{(-1)^n}{2}\Biggl| ~ \le ~ c\cdot\frac{\ln{n}}{n},$$
where $\widetilde{\lambda}_n$ — the weighted mean of eigenvalues in $\widetilde {\sigma}_n$.
Equally satisfy estimates:
$$\Biggl(\int\limits_0^{2\pi}\Biggl|(\widetilde{P}_{n}x)(t) - \frac{1}{\pi}\Biggl(\int\limits_0^{2\pi}x(t)\cos{nt}dt\Biggr)\cos{nt} ~ - $$

$$ - ~ \frac{1}{\pi}\Biggl(\int\limits_0^{2\pi}x(t)\sin{nt}dt\Biggr)\sin{nt}\Biggr|^{2}dt\Biggr)^{1/2} \le c(n)\gamma_1(n), ~ n \ge 1,$$
for some sequence c>0 where $\lim\limits_{n\to \infty} c(n) = 1$. Here $\widetilde{P}_{n}$ is the Riesz projector constructed by spectral of set $\widetilde{\sigma}_{n}$ of operator $A - B$.
Keywords: eigenvalues, operator spectrum, differential operator of second order operator, spectrum asymptotic, similar operators method.
Funding agency Grant number
Russian Foundation for Basic Research № 16-01-00197_а
Document Type: Article
UDC: 517.9
BBC: 22.161
Language: Russian
Citation: A. N. Shelkovoy, “Spectral properties of second order differential operator determined by non-local boundary conditions”, Mathematical Physics and Computer Simulation, 21:4 (2018), 18–33
Citation in format AMSBIB
\Bibitem{She18}
\by A.~N.~Shelkovoy
\paper Spectral properties of second order differential operator determined by non-local boundary conditions
\jour Mathematical Physics and Computer Simulation
\yr 2018
\vol 21
\issue 4
\pages 18--33
\mathnet{http://mi.mathnet.ru/vvgum240}
\crossref{https://doi.org/10.15688/mpcm.jvolsu.2018.4.2}
Linking options:
  • https://www.mathnet.ru/eng/vvgum240
  • https://www.mathnet.ru/eng/vvgum/v21/i4/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :56
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024