Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, Issue 5(24), Pages 55–61 (Mi vvgum23)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Some vector operations

I. P. Popov

Department of Economic Development, Trade and Labour of the Government of Kurgan region, Kurgan
Full-text PDF (567 kB) Citations (1)
References:
Abstract: The work is devoted to a series of operations on the space of smooth functions and vector fields in three-dimensional Euclidean space. Zero values are divided into two categories: the first category includes the value of the content of which "empty", the second - consisting of values whose sum is equal to zero. The latter category includes the cross product of a vector by itself. We introduce the notion of the terms of the vector products, which is the first or ortopositive part and the second part or ortoonegative; application of this approach to the vector product of the Hamiltonian operator (nabla) on itself gives rise to a mixed vector differential operator of second order, is a key element in defining the concept of surface vector analysis - mixed gradient mixed derivative in the direction of mixed divergence and rotor. It is shown that the above mentioned operations are superficial differentiation, which can be regarded as the inverse problem to surface integration, swarms that these operations can be used to produce a series of expansions vector representations of the second order, part of which has an equivalent first order. Define the operation of the conjugate of the vector product of vector fields. It is shown that the function can be restored in its mixed gradient. Presented some of the physical interpretation of the concepts introduced, including the definition of Umov mixed gradient as a function of power, volumetric energy density of the force field as a mixed divergence of the function of the spatial distribution of forces, etc.
Keywords: operator, mixed gradient, divergence and curl, coordinates, conjugate vector.
Document Type: Article
UDC: 514.742.43
BBC: 22.1
Language: Russian
Citation: I. P. Popov, “Some vector operations”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 5(24), 55–61
Citation in format AMSBIB
\Bibitem{Pop14}
\by I.~P.~Popov
\paper Some vector operations
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2014
\issue 5(24)
\pages 55--61
\mathnet{http://mi.mathnet.ru/vvgum23}
Linking options:
  • https://www.mathnet.ru/eng/vvgum23
  • https://www.mathnet.ru/eng/vvgum/y2014/i5/p55
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :80
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024