Mathematical Physics and Computer Simulation
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical Physics and Computer Simulation, 2017, Volume 20, Issue 5, Pages 27–31
DOI: https://doi.org/10.15688/mpcm.jvolsu.2017.5.3
(Mi vvgum203)
 

Mathematics and mechanics

On the structural stability relative to the space of linear differential equations with periodic coefficients

V. Sh. Roitenberg

Yaroslavl State Technical University
References:
Abstract: Let $\textrm{LE}^n_\omega$ be the Banach space of linear non-homogeneous differential equations of order $n$ with $\omega$-periodic coefficients. We prove the following statements. The equation $l\in \textrm{LE}^n_\omega$ is structurally stable in the phase space $\Phi^2:=\mathbf{R}^n\times\mathbf{R}/\omega \mathbf{Z}(n\geq2)$ if and only if its multiplicators do not belong to the unit circle. The set of all structurally stable equations is everywhere dense in $\textrm{LE}^n_\omega$. The equation $l\in \textrm{LE}^n_\omega$ is structurally stable in the phase space $\bar{\Phi}^2:=\mathbf{RP}^2\times\mathbf{R}/\omega \mathbf{Z}$ if and only if its multiplicators are real, different and distinct from $\pm 1$. We describe also the topological equivalence classis of structurally stable in $\bar{\Phi}^2$ equations.
Keywords: linear differential equations, periodic coefficients, projective plane, structurally stable equations, multiplicators.
Document Type: Article
UDC: 517.925.52 + 517.926
BBC: 22.161.6
Language: Russian
Citation: V. Sh. Roitenberg, “On the structural stability relative to the space of linear differential equations with periodic coefficients”, Mathematical Physics and Computer Simulation, 20:5 (2017), 27–31
Citation in format AMSBIB
\Bibitem{Roi17}
\by V.~Sh.~Roitenberg
\paper On the structural stability relative to the space of linear differential equations with periodic coefficients
\jour Mathematical Physics and Computer Simulation
\yr 2017
\vol 20
\issue 5
\pages 27--31
\mathnet{http://mi.mathnet.ru/vvgum203}
\crossref{https://doi.org/10.15688/mpcm.jvolsu.2017.5.3}
Linking options:
  • https://www.mathnet.ru/eng/vvgum203
  • https://www.mathnet.ru/eng/vvgum/v20/i5/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :39
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024