Mathematical Physics and Computer Simulation
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical Physics and Computer Simulation, 2017, Volume 20, Issue 5, Pages 17–26
DOI: https://doi.org/10.15688/mpcm.jvolsu.2017.5.2
(Mi vvgum202)
 

Mathematics and mechanics

On a class of functional equations

V. A. Kyrov

Gorno-Altaisk State University
References:
Abstract: Differentiable considered class $C^4$ function $f_{1,2}:S_f\to R$, $S_f\subset R^{n+1}\times R^{n+1}$:
$$ f_1(x,y) = \sigma\left(\theta(x,y),w\right),\, f_2(x,y) = \varkappa\left(\theta(x,y),z\right), $$
where $\theta$, $\sigma$, $\varkappa$ — are functions of class $C^4$, $\theta(x,y)=\theta(x^1,\ldots,x^n,y^1,\ldots,y^n)$, $w = x^{n+1}-y^{n+1}$, $z = x^{n+1}+y^{n+1}$, and the following inequalities hold:
$$ \dfrac{\partial\theta}{\partial x^{i}}\ne0,\,\dfrac{\partial\theta}{\partial y^{i}}\ne0,\,\dfrac{\partial \sigma}{\partial\theta}\ne0,\,\dfrac{\partial \sigma}{\partial w}\ne0,\,\dfrac{\partial \varkappa}{\partial\theta}\ne0,\,\dfrac{\partial \varkappa}{\partial z}\ne0. $$
The functions $ f_{1,2} $ are two-point invariants of the action of some Lie group in the space $ R^{n+1}$. The criterion of local invariance of such an action for these functions leads to functional differential equations:
$$ ((Y(x))'_{x^{n+1}} + (Y(y))'_{y^{n+1}})\varphi'_{w} + (Y(x) - Y(y))\varphi''_{ww} = 0,(1) $$

$$ ((Y(x))'_{x^{n+1}} + (Y(y))'_{y^{n+1}})\lambda'_{z} + (Y(x) + Y(y))\lambda''_{zz} = 0,(2) $$
where $\varphi(\theta,w) = -\frac{\partial \sigma}{\partial w}/\frac{\partial \sigma}{\partial \vartheta}$ and $\lambda(\theta,z) = -\frac{\partial \varkappa}{\partial z}/\frac{\partial \varkappa}{\partial \theta}$.
Theorem 1. In the neighborhood $U(\langle x,y\rangle)$ the equation $(1)$, where $w = x^{n+1} - y^{n+1}$, $Y\ne\text{const}$, $\varphi'_w\ne0$, has the following solutions:
$$ Y = C(x^1,\ldots,x^n),\,\varphi = a(\theta)w + b(\theta); $$

$$ Y = rx^{n+1} + c,\,\varphi = a(\theta)\dfrac{1}{w} + b(\theta); $$

$$ Y = r(x^{n+1})^2 + c,\,\varphi = a(\theta)\dfrac{1}{w} + b(\theta);$$

$$ Y =r\cos(\omega x^{n+1} + \alpha) + c,\,\varphi = a(\theta)\text{ctg}\dfrac{\omega w}{2} + b(\theta); $$

$$ Y =re^{\omega x^{n+1}} + c,\,\varphi = a(\theta)\dfrac{e^{\omega w}}{e^{\omega w}-1} + b(\theta); $$

$$ Y =r\cosh(\omega x^{n+1} + \alpha) + c,\,\varphi = a(\theta)\text{cth}\dfrac{\omega w}{2} + b(\theta); $$

$$ Y =r\sinh(\omega x^{n+1} + \alpha) + c,\,\varphi = a(\theta)\text{th}\dfrac{\omega w}{2} + b(\theta), $$
where $r,c,\alpha = \text{const}$, $C(x^1,\ldots,x^n)\ne\text{const}$, $a(\theta), b(\theta)$ — are functions of class $C^3$, $a(\theta)\ne0$.
Theorem 2. In the neighborhood $U(\langle x,y\rangle)$ the equation $(2)$, where $z = x^{n+1} + y^{n+1}$, $Y\ne0$, $\lambda'_z\ne0$, has the following solutions:
$$ Y = C(x^1,\ldots,x^n),\,\lambda(\theta,z) = a(\theta)z + b(\theta); $$

$$ Y = rx^{n+1} + c,\,\lambda = a(\theta)\dfrac{1}{rz+2c} + b(\theta); $$

$$ Y =r\cos(\omega x^{n+1} + \alpha),\,\lambda = a(\theta)\text{tg}\dfrac{\omega z+2\alpha}{2} + b(\theta); $$

$$ Y =re^{\omega x^{n+1}},\,\lambda = a(\theta)e^{-\omega z} + b(\theta); $$

$$ Y =r\cosh(\omega x^{n+1} + \alpha),\,\lambda = a(\theta)\text{th}\dfrac{\omega z+2\alpha}{2} + b(\theta); $$

$$ Y =r\sinh(\omega x^{n+1} + \alpha),\,\lambda = a(\theta)\text{cth}\dfrac{\omega z+2\alpha}{2} + b(\theta), $$
где $r,c,\alpha = \text{const}$, $C(x^1,\ldots,x^n)\ne\text{const}$, $a(\theta), b(\theta)$ — are functions of class $C^3$, $a(\theta)\ne0$.
Keywords: functional equation, functional differential equation, differential equation.
Document Type: Article
UDC: 517.977
BBC: 22.161.6
Language: Russian
Citation: V. A. Kyrov, “On a class of functional equations”, Mathematical Physics and Computer Simulation, 20:5 (2017), 17–26
Citation in format AMSBIB
\Bibitem{Kyr17}
\by V.~A.~Kyrov
\paper On a class of functional equations
\jour Mathematical Physics and Computer Simulation
\yr 2017
\vol 20
\issue 5
\pages 17--26
\mathnet{http://mi.mathnet.ru/vvgum202}
\crossref{https://doi.org/10.15688/mpcm.jvolsu.2017.5.2}
Linking options:
  • https://www.mathnet.ru/eng/vvgum202
  • https://www.mathnet.ru/eng/vvgum/v20/i5/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024