Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, Issue 1(26), Pages 6–12
DOI: https://doi.org/10.15688/jvolsu1.2015.1.1
(Mi vvgum2)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Error estimate calculation of integral functionals using piecewise linear functions

A. A. Klyachin

Volgograd State University
Full-text PDF (352 kB) Citations (2)
References:
Abstract: Consider the functional given by the integral
\begin{equation} I(u)=\int\limits_{\Omega}G(x,u,\nabla u)dx, \end{equation}
defined for functions $u\in C^1(\Omega)\cap C(\overline{\Omega})$. Note that the Euler — Lagrange equation of the variational problem for this functional has the form
\begin{equation} Q[u]\equiv \sum_{i=1}^n\left(G'_{\xi_i}(x,u,\nabla u)\right)'_{x_i}-G'_u(x,u,\nabla u)=0. \end{equation}
Where $G(x,u,\nabla u)=\sqrt{1+|\nabla u|^2}$. Equation (2) is the equation of a minimal surface. Another example is the Poisson equation $\Delta u=f(x)$, which corresponds to the function $G(x,u,\nabla u)=|\nabla u|^2+2f(x)u(x)$.
Next, we examine the question of the degree of approximation of the functional (1) by piecewise linear functions. For such problems lead the convergence of variational methods for some boundary value problems. Note that the derivatives of a continuously differentiable function approach derived piecewise linear function with an error of the first order with respect to the diameter of the triangles of the triangulation. We obtain that the value of the integral (1) for functions in $ C ^ 2 $ is possible to bring a greater degree of accuracy. Note also that in [1; 6] estimates the error calculation of the surface triangulation, built on a rectangular grid.
Keywords: piecewise linear functions, approximation of functional, triangulation, degree of error, fineness of partition.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02517
Document Type: Article
UDC: 517.951, 519.632
BBC: 22.161, 22.19
Language: Russian
Citation: A. A. Klyachin, “Error estimate calculation of integral functionals using piecewise linear functions”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2015, no. 1(26), 6–12
Citation in format AMSBIB
\Bibitem{Kly15}
\by A.~A.~Klyachin
\paper Error estimate calculation of integral functionals using piecewise linear functions
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2015
\issue 1(26)
\pages 6--12
\mathnet{http://mi.mathnet.ru/vvgum2}
\crossref{https://doi.org/10.15688/jvolsu1.2015.1.1}
Linking options:
  • https://www.mathnet.ru/eng/vvgum2
  • https://www.mathnet.ru/eng/vvgum/y2015/i1/p6
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :60
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024