Mathematical Physics and Computer Simulation
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical Physics and Computer Simulation, 2017, Volume 20, Issue 4, Pages 6–17
DOI: https://doi.org/10.15688/mpcm.jvolsu.2017.4.1
(Mi vvgum192)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

The asymptotic of eigenvalues for difference operator with growing potentia

G. V. Garkavenkoa, N. B. Uskovab

a Voronezh State Pedagogical University
b Voronezh State Technical University
Full-text PDF (386 kB) Citations (2)
References:
Abstract: We consider $A: D(A)\subset l_2(\mathbb{Z})\to l_2(\mathbb{Z})$, $(Ax)(n)=a(n)x(n)$, $n\in\mathbb{Z}$, $x\in D(A)$, and $(Bx)(n)=-2x(n)+x(n-1)+x(n+1)$. Let $a: \mathbb{Z}\to\mathbb{C}$ be a sequence with property:
1) $a(i)\ne a(j)$, $i\ne j$;
2) $\lim\limits_{|n|\to\infty}|a(n)|=\infty$;
3) $0<d_i=\inf_{i\ne j}|a(i)-a(j)|\to\infty$, $|i|\to\infty$.
By $\mathcal{A}$ we denote the operator $A-B$. By $P_n$ we denote $P_n=P(a(n), A)$, $n\in\mathbb{Z}$, and by $Q_k$ denote the operator $Q_k=\sum\limits_{|i|\leqslant k}P_i$.
Theorem 1. There exists a number $k\geqslant 0$, such that the spectrum $\sigma(\mathcal{A})$ of operator $\mathcal{A}$ has form
$$ \sigma(\mathcal{A})=\sigma_{(k)}\bigcup\bigg(\bigcup_{|i|>k}\sigma_i\bigg), $$
where $\sigma_{(k)}$ is a finite set with number of points not exceeding $2k+1$ and $\sigma_i=\{\mu_i\}$, $|i|>k$, are singleton sets. The asymptotic formulas of eigenvalues have the following form:
$$ \mu_i=a(i)+2+O(d_i^{-1}), $$

$$ \mu_i=a(i)+2-\frac{a(i+1)-2a(i)+a(i-1)}{(a(i+1)-a(i))(a(i-1)-a(i))}+O(d_i^{-3}), \quad |i|>k. $$

Theorem 2. Let the sequence $a:\mathbb{Z}\to\mathbb{C}$ satisfies the condition $\mathrm{Re}\,a(n)\leqslant\beta$ for all $n\in\mathbb{Z}$ and a $\beta\in\mathbb{R}$. Then the operator $\mathcal{A}$ is the generator of the semigroup operators $T: \mathbb{R}_+\to\mathrm{End}\,l_2(\mathbb{Z})$ and this semigroup is similar to $\widetilde{T}: \mathbb{R}_+\to\mathrm{End}\,l_2(\mathbb{Z})$ type
$$ \widetilde{T}(t)=\widetilde{T}_{(k)}(t)\oplus \widetilde{T}^{(k)}(t), \quad t\in\mathbb{R}_+, $$
acting in $l_2(\mathbb{Z})=\mathcal{H}_{(k)}\oplus\mathcal{H}^{(k)}$, where $\mathcal{H}_{(k)}=\mathrm{Im}\,Q_k$ and $\mathcal{H}^{(k)}=\mathrm{Im}\,(I-Q_k)$. The semigroup $\widetilde{T}^{(k)}: \mathbb{R}_+\to\mathrm{End}\,\mathcal{H}^{(k)}$ determined by the formula
$$ \widetilde{T}^{(k)}(t)x=\sum_{|n|>k}e^{\mu_nt}P_nx, \quad x\in\mathcal{H}^{(k)}, \quad t\in\mathbb{R}_+, $$
where the numbers $\mu_n$, $|n|>k$, are defined by Theorem 1.
Theorem 3. Let $\alpha\leqslant \mathrm{Re}\,a(n)\leqslant\beta$, $\alpha$, $\beta\in\mathbb{R}$, for every $n\in\mathbb{Z}$. Then the operator $\mathcal{A}: D(\mathcal{A})\subset l_2(\mathbb{Z})\to l_2(\mathbb{Z})$ is generator of group $T: \mathbb{R}\to \mathrm{End}\,l_2(\mathbb{Z})$. This group is similar to $\widetilde{T}: \mathbb{R}\to \mathrm{End}\,l_2(\mathbb{Z})$, where $\widetilde{T}(t)=\widetilde{T}_{(k)}(t)\oplus \widetilde{T}^{(k)}(t)$, $t\in\mathbb{R}$ and
$$ \widetilde{T}^{(k)}(t)x=\sum_{|n|>k}e^{\mu_nt}P_nx, \quad x\in\mathcal{H}^{(k)}, \quad t\in\mathbb{R}. $$

Theorem 4. Let the operator $\mathcal{A}: D(\mathcal{A})\subset l_2(\mathbb{Z})\to l_2(\mathbb{Z})$ be self-adjoint. Then $i\mathcal{A}$ is a generator of isometric group $T: \mathbb{R}\to \mathrm{End}\,l_2(\mathbb{Z})$. This group is similar to
$$ \widetilde{T}(t)=\widetilde{T}_{(k)}(t)\oplus \widetilde{T}^{(k)}(t), \quad t\in\mathbb{R}. $$
and
$$ \widetilde{T}^{(k)}(t)x=\sum_{|n|>k}e^{i\mu_nt}P_nx, \quad x\in\mathcal{H}^{(k)}, \quad t\in\mathbb{R}. $$
Keywords: method of similar operators, difference operator, eigenvalues, semigroup of operators, generator of operator semigroup.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00197
Document Type: Article
UDC: 517.9
BBC: 22.161
Language: Russian
Citation: G. V. Garkavenko, N. B. Uskova, “The asymptotic of eigenvalues for difference operator with growing potentia”, Mathematical Physics and Computer Simulation, 20:4 (2017), 6–17
Citation in format AMSBIB
\Bibitem{GarUsk17}
\by G.~V.~Garkavenko, N.~B.~Uskova
\paper The asymptotic of eigenvalues for difference operator with growing potentia
\jour Mathematical Physics and Computer Simulation
\yr 2017
\vol 20
\issue 4
\pages 6--17
\mathnet{http://mi.mathnet.ru/vvgum192}
\crossref{https://doi.org/10.15688/mpcm.jvolsu.2017.4.1}
Linking options:
  • https://www.mathnet.ru/eng/vvgum192
  • https://www.mathnet.ru/eng/vvgum/v20/i4/p6
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024