Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 6(37), Pages 81–98
DOI: https://doi.org/10.15688/jvolsu1.2016.6.8
(Mi vvgum148)
 

Mathematics

Comparison of solutions of nonlinear differential equations with loaded level sets

B. E. Levitsii, A. E. Biryuk

Kuban State University, Krasnodar
References:
Abstract: We extend well-known comparison results to a class of partial differential equations with a divergent principal part containing a weight coefficient that depends on the measure of a level set of solution. Let $\Omega \subset {\mathbb{R}}^m$ be an open set with finite volume. Let $g_0(x,u) = \Phi(\mathrm{meas\left\{ \chi \in \Omega \colon u(\chi) > u(x)\right\}})$, where $\Phi$ is a continuous nonnegative function. Let $u \colon \Omega \to [0, \infty)$ be a weak solution to
$$ - \sum_{j=1}^{m} \frac{\partial}{\partial x_j} \left( g(x,u) \cdot {|\nabla u|}^{p-2} \frac{\partial u}{\partial x_j}\right) = f(x) + k {|\nabla u|}^{q} $$
subject to homogeneous boundary conditions, where $g(x,u) \ge g_0(x,u), k\ge 0$ and $f \in L^1 (\Omega)$. We prove that under certain assumptions there is a weak nonnegative solution $V \colon {\Omega}^* \to [0, \infty)$ to homogeneous Dirichlet problem for
$$ - \sum_{j=1}^{m} \frac{\partial}{\partial x_j} \left( g_0(x,V) \cdot {|\nabla V|}^{p-2} \frac{\partial V}{\partial x_j}\right) = f(x) + k {|\nabla V|}^{q} $$
such that $u^* \le V$ and $\int\limits_{\Omega} {|\nabla u|}^{p} dx \le \int\limits_{{\Omega}^*} {|\nabla V|}^{p} dx$. Here $\Omega^*$ is the open ball whose volume coincides with the volume of $\Omega$ and $u^*$ is the Schwarz symmetrization of $u$.
Keywords: comparison theorems, $p$-elliptic equations, degenerate nonlinearities.
Document Type: Article
UDC: 517.95
BBC: 22.1
Language: Russian
Citation: B. E. Levitsii, A. E. Biryuk, “Comparison of solutions of nonlinear differential equations with loaded level sets”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 6(37), 81–98
Citation in format AMSBIB
\Bibitem{LevBir16}
\by B.~E.~Levitsii, A.~E.~Biryuk
\paper Comparison of solutions of nonlinear differential equations with loaded level sets
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 6(37)
\pages 81--98
\mathnet{http://mi.mathnet.ru/vvgum148}
\crossref{https://doi.org/10.15688/jvolsu1.2016.6.8}
Linking options:
  • https://www.mathnet.ru/eng/vvgum148
  • https://www.mathnet.ru/eng/vvgum/y2016/i6/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024