Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 6(37), Pages 61–69
DOI: https://doi.org/10.15688/jvolsu1.2016.6.6
(Mi vvgum146)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

On approximation of Stepanov's almost periodic functions by means of Marcinkiewicz

Yu. Kh. Khasanova, E. Safarzodab

a Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
b S. Aini Tajik State Pedagogical University
Full-text PDF (346 kB) Citations (1)
References:
Abstract: We study some questions of approximation of Stepanovs almost-periodic functions of partial Fourier sums and means of Marcinkiewicz, when the Fourier exponents of functions under consideration have a limit point in infinity.
Let $S_p$ ($p\geq1$) denote the class of Stepanovs almost-periodic functions, whose Fourier exponents take the following form:
$$ \lambda_0=0,\,\,\,\lambda_{-n}=-\lambda_n,\,\,\,\lim_{n\rightarrow\infty}\lambda_n=\infty,\,\,\, \lambda_n<\lambda_{n+1}\,\,\,(n=1,2,\ldots). $$

Consider the Fourier series for a functions $f(x)\in S_p$
$$ f(x)\sim\sum\limits_{n = -\infty}^\infty A_n e^{i\lambda_nx}, $$
where
$$ A_n=\lim_{T\rightarrow\infty}\frac{1}{2T}\int_{-T}^Tf(x)e^{-i\lambda_nx}dx $$
are Fourier coefficients of the function $f(x)\in S_p$ and
$$ S_\sigma(f;x)=\sum_{|\lambda_n|\leq\sigma}A_n e^{i\lambda_nx}\,\,\,(\sigma>0) $$
is a partial sum of Fourier series.
Let $\Phi_\sigma(t)$ is an arbitrary real continuous even function such that
$$ 1) \Phi_{\sigma}(0)=1; \,\,\,2) \Phi_{\sigma}(t)=0\,\,\,(|t|\leq\sigma). $$

We set
$$ U_{\sigma}(f;\varphi;x)=\sum_{|\lambda_{m}|\leq\sigma}A_m\Phi_{\sigma}(\lambda_{m})e^{i\lambda_{m}x}. $$

Let $S_p(R)$ stand for the space of bounded functions $f(x)\in S_p \,\,\,(p\geq 1)$ with the norm
$$ \|f(x)\|_{S_p}=\sup_{-\infty<x<\infty}\left\{\frac{1}{l}\int_x^{x+l}|f(x)|^p dx\right\}^{\frac{1}{p}}. $$

Consider the value
$$ R(f;x)=\left\|U_{\sigma}(f;\varphi;x)-f(x)\right\|_{S_p}, $$
where
$$ U_{\sigma}(f;\varphi;x)=\int_{-\infty}^{\infty} f(x+t) \Phi_{\sigma}(t)dt, $$

$$ \Phi_{\sigma}(t)=\frac{1}{2\pi}\int_{0}^{\infty}\varphi_{\sigma}(u)K_{u}(t)du,\,\,\, K_{u}(t)=2\frac{\sin(ut)}{t}, $$
$\varphi_{\sigma}(u)$ is some even function absolutely integrable on the interval $(0;\infty)$ with each fixed $\sigma>0$.
Theorem. If $f(x)\in S_p$, where Fourier exponents have no limit points at a finite distance, i.e. $\lambda_n\rightarrow\infty$, then the following bound is valid
$$ R(f;\varphi_{\sigma,a})\leq M\frac{\sigma+a}{\sigma-a}E_{\Lambda}(f)_{S_p}, $$
and
$$ \left\|f(x)-\frac{1}{n+1}\sum_{k=0}^{n}S_{k}(f;x)\right\|_{S_p}\leq\frac{M}{n+1}\sum_{k=0}^{n}E_{k}(f)_{S_p}, $$
where $M$—constant and
$$ E_{\Lambda}(f)_{S_p}=\inf_{A_m}\left\|f(x)-\sum_{|\lambda_{m}|\leq\Lambda}A_m e^{i\lambda_{m}x}\right\|_{S_p}. $$
Keywords: Stepanovs almost periodic functions, Fourier series, Fourier exponents, limiting point in infinity, means of Marcinkievicz, trigonometric polynomial, best approximation.
Document Type: Article
UDC: 517.512
BBC: 22.161.5
Language: Russian
Citation: Yu. Kh. Khasanov, E. Safarzoda, “On approximation of Stepanov's almost periodic functions by means of Marcinkiewicz”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 6(37), 61–69
Citation in format AMSBIB
\Bibitem{KhaSaf16}
\by Yu.~Kh.~Khasanov, E.~Safarzoda
\paper On approximation of Stepanov's almost periodic functions by means of Marcinkiewicz
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 6(37)
\pages 61--69
\mathnet{http://mi.mathnet.ru/vvgum146}
\crossref{https://doi.org/10.15688/jvolsu1.2016.6.6}
Linking options:
  • https://www.mathnet.ru/eng/vvgum146
  • https://www.mathnet.ru/eng/vvgum/y2016/i6/p61
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024