Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 5(36), Pages 60–72
DOI: https://doi.org/10.15688/jvolsu1.2016.5.6
(Mi vvgum131)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

Extremals of the equation for the potential energy functional

N. M. Poluboyarova

Volgograd State University
Full-text PDF (403 kB) Citations (3)
References:
Abstract: To study the surfaces on the stability (or instability) is necessary to obtain the expression of the first and second functional variation. This article presents the first of the research of the functional of potential energy. We calculate the first variation of the potential energy functional. Proven some consequences of them. They help to build the extreme surface of rotation.
Let $M$ be an $n$ dimensional connected orientable manifold from the class $C^2$. We consider a hypersurface ${\mathcal M}=(M,u)$, obtained by a $C^2$ -immersion $u: M\to {\mathbf{R}}^{n+1}$. Let $\Omega\subset\mathbf{R}^{n+1}$ be a domain such that $\mathcal M\subset\partial\Omega;$ $\Phi$, $\Psi:\, {\mathbf{R}}^{n+1}\to{\mathbf{R}}$$C^2$-smooth function. If $\xi$ the field of unit normals to the surface ${\mathcal M},$ then for any $C^2$-smooth surfaces ${\mathcal M}$ defined functional
$$ W({\mathcal M})=\int\limits_{\mathcal M}{\Phi(\xi)\, d{\mathcal M}}+\int\limits_{\Omega}{\Psi(x)\, d{x}}, $$
which we call the functional of potential energy. It is the main object of study.
Theorem of the first variation of the functional.
Theorem 3. If $W(t)=W({\mathcal M}_t),$ then
$$ W'(0)=\int \limits _{\mathcal M} {({\rm div}(D\Phi(\xi))^T-nH\Phi(\xi)+\Psi(x))h(x)\, d{\mathcal M}}, $$
where $h(x)\in C^1_0(\mathcal M)$.
Theorem 4 is the the main theorem of of this article. It obtained the equations of extremals of the functional of potential energy.
Theorem 4. A surface $\mathcal M$ of class $C^2$ is extremal of functional of potential energy if and only if
$$ \sum \limits _{i=1}^{n}k_iG(E_i,E_i)=\Psi(x).$$

Corollary. If a extreme surface $\mathcal M$ is a plane, then the function $\Psi(x)=0.$
Theorem 5. If $f=x_{n+1}$ and $\Phi(\xi)=\Phi(\xi_{n+1}),$ then
$$\mathrm {div}((\xi_{n+1}\Phi'(\xi_{n+1})-\Phi(\xi_{n+1}))\nabla f)=\Psi(x)\xi_{n+1}.$$
Keywords: variation of functional, extreme surface, functional type area, volumetric power density functional, functional of potential energy, mean curvature of extreme surface.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02479-р_поволжье_а
Document Type: Article
UDC: 514.752, 514.764.274, 517.97
BBC: 22.15, 22.161
Language: Russian
Citation: N. M. Poluboyarova, “Extremals of the equation for the potential energy functional”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 5(36), 60–72
Citation in format AMSBIB
\Bibitem{Pol16}
\by N.~M.~Poluboyarova
\paper Extremals of the equation for the potential energy functional
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 5(36)
\pages 60--72
\mathnet{http://mi.mathnet.ru/vvgum131}
\crossref{https://doi.org/10.15688/jvolsu1.2016.5.6}
Linking options:
  • https://www.mathnet.ru/eng/vvgum131
  • https://www.mathnet.ru/eng/vvgum/y2016/i5/p60
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:224
    Full-text PDF :53
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024