Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 5(36), Pages 29–41
DOI: https://doi.org/10.15688/jvolsu1.2016.5.4
(Mi vvgum129)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Existence of solutions of anisotropic elliptic equations with variable exponents of nonlinearity in unbounded domains

L. M. Kozhevnikova, A. Sh. Kamalåtdinov

Sterlitamak Branch of Bashkir State University
Full-text PDF (427 kB) Citations (2)
References:
Abstract: For anisotropic quasilinear second order elliptic equations in divergence form with a non-standard growth conditions
\begin{equation} \sum\limits_{i=1}^{n}(a_i(\mathrm{x},u,\nabla u))_{x_i}-a_0(\mathrm{x},u,\nabla u)=0,\quad \mathrm{x} \in \Omega; \tag{1} \end{equation}
in domain $\Omega $ of the space $\mathbb{R}^n,\;\Omega\subsetneq \mathbb{R}^n,\; n \geq 2,$ the Dirichlet problem is considered with homogeneous boundary condition
\begin{equation} u\Big|_{\partial\Omega}= 0. \tag{2} \end{equation}
It is assumed that the functions $a_i(\mathrm{x},s_0,s_1,\ldots,s_n)$ have an polinomial growth on variable $s_i$ with powers $p_i(\mathrm{x})\in(1,\infty),\;i=0,1,\ldots,n$. As example can be used the equation
$$ \sum\limits_{i=1}^{n}(|u_{x_i}|^{p_i(\mathrm{x})-2}u_{x_i})_{x_i}-|u|^{p_0(\mathrm{x})-2}u=\sum\limits_{i=1}^{n}(\phi_i(\mathrm{x}))_{x_i}-\phi_0(\mathrm{x}). $$

In the paper by M. B. Benboubker, E. Azroul, A. Barbara (Quasilinear elliptic problems with nonstandartd growths, Electronic Journal of Differential Equations, 2011) the existence of solutions of the Dirichlet problem in a bounded domain was proved for an isotropic elliptic equations with variable nonlinearities. For isotropic equations with constant power of nonlinearity the existence of solutions of the Dirichlet problem in an arbitrary domain was established by F. E. Browder (Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Nati. Acad. Sci. USA, 1977). The proof is based on an abstract theorem for pseudomonotone operators. In this paper we prove the existence of solutions of the problem (1), (2) without the assumption of boundedness of $\Omega$ and the smoothness of its boundary.
Note by $L_{p(\cdot)}(\Omega)$ Lebesgue spaces with variable exponent $p(\mathrm{x})$ and the Luxemburg norm $\|\cdot\|_{p(\cdot)}$. Let the $\overrightarrow{\mathbf p} (\mathrm{x})=(p_0(\mathrm{x}),p_1(\mathrm{x}),...,p_n(\mathrm{x})) \in (L^+_{\infty}(\Omega))^{n+1}\cap(C^+ (\overline{\Omega}))^{n+1}$. The Sobolev–Orlicz space with variable exponents $\mathring {W}_{\overrightarrow{\mathbf p}(\cdot)}^{1}(\Omega)$ is defined as the completion of the space $C_0^{\infty}(\Omega)$ in the norm
$$ \|v\|_{\mathring {W}_{\overrightarrow{\mathbf p}(\cdot)}^{1}(\Omega)}=\|v\|_{p_0(\cdot)}+\sum\limits_{i=1}^n\|v_{x_i}\|_{p_i(\cdot)}. $$

It is assumed that
\begin{equation} p_+(\mathrm{x})\leq p_0(\mathrm{x})< p_*(\mathrm{x}),\quad \mathrm{x}\in \Omega, \tag{3} \end{equation}
where
$$p_+(\mathrm{x})=\max\{p_1(\mathrm{x}),p_2(\mathrm{x}),...,p_n(\mathrm{x})\}, \quad p_*(\mathrm{x})=\left\{
\begin{array}{ll}\frac{n\overline{p}(\mathrm{x})}{n-\overline{p}(\mathrm{x})},& \overline{p}(\mathrm{x})>n,\\ +\infty,& \overline{p}(\mathrm{x})\leq n, \end{array}
\right.,$$

$$ \quad\overline{p}(\mathrm{x})={n}\left(\sum\limits_{i=1}^n 1/p_i(\mathrm{x})\right)^{-1}.$$
And it is also assumed that $a_i(\mathrm{x},s_0,\mathrm{s}), \;$ $i=0,\ldots,n,$ $\mathrm{x}\in \Omega,\;$ $\mathbf{s}=(s_0, \mathrm{s})=(s_0,s_1,\ldots,s_{n})\in\mathbb{R}^{n+1}$, are the Caratheodory functions, and there exist positive numbers $\widehat{a}, \overline{a}$ and measurable non-negative function $\phi(\mathrm{x})\in L_1(\Omega),$ $\Phi_i(\mathrm{x})\in L_{p'_i(\cdot)}(\Omega),\;p'_i(\mathrm{x})=p_i(\mathrm{x})/(p_i(\mathrm{x})-1),\;i=0,1,\ldots,n,$ such that for almost all $\mathrm{x}\in\Omega$ and any ${\mathbf s}=(s_0,\mathrm{s})\in\mathbb{R}^{n+1}$ the inequalities hold:
\begin{equation} |a_i(\mathrm{x},s_0,\mathrm{s})|\leq \widehat{a} (|s_i|^{p_i(\mathrm{x})-1}+|s_0|^{p_0(\mathrm{x})/p'_i(\mathrm{x})})+\Phi_i(\mathrm{x}),\quad i=0,1,\ldots,n; \tag{4} \end{equation}

\begin{equation} \sum\limits_{i=1}^n(a_i(\mathrm{x},s_0,\mathrm{s})-a_i(\mathrm{x},{s}_0,\mathrm{t}))(s_i-t_i)>0,\quad \mathrm{s}\neq \mathrm{t}; \tag{5} \end{equation}

\begin{equation} \sum\limits_{i=0}^na_i(\mathrm{x},s_0,\mathrm{s})s_i\geq \overline{a}\sum\limits_{i=0}^n|s_i|^{p_i(\mathrm{x})}-\phi(\mathrm{x}). \tag{6} \end{equation}

Elliptic operators ${\mathbf A}:\mathring{W}_{\overrightarrow{\mathbf p}(\cdot)}^{1}(\Omega)\rightarrow \left(\mathring{W}_{\overrightarrow{\mathbf p}(\cdot)}^{1}(\Omega)\right)',$ corresponding to the problem (1), (2), defined by the equation:
$$ \langle{\mathbf A}(u),v\rangle=\int\limits_{\Omega}\sum\limits_{i=0}^{n}a_i(\mathrm{x},u,\nabla u)v_{x_i}d\mathrm{x},\quad u(\mathrm{x}), v(\mathrm{x}) \in \mathring{W}^{1}_{\overrightarrow{\mathbf p}(\cdot)} ({\Omega}).$$
It is proved that operator ${\mathbf A}$ is pseudomonotone, bounded and coercitive. On the basis of these properties we prove the theorem.
Theorem. If the conditions (3)–(6), there is a generalized solution of the problem (1), (2).
Keywords: anisotropic elliptic equation, existence solution, variable exponent, Dirichlet problem, pseudomonotone operator.
Document Type: Article
UDC: 517.956.25
BBC: 22.161.626
Language: Russian
Citation: L. M. Kozhevnikova, A. Sh. Kamalåtdinov, “Existence of solutions of anisotropic elliptic equations with variable exponents of nonlinearity in unbounded domains”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 5(36), 29–41
Citation in format AMSBIB
\Bibitem{KozKam16}
\by L.~M.~Kozhevnikova, A.~Sh.~Kamalåtdinov
\paper Existence of solutions of anisotropic elliptic equations with variable exponents of nonlinearity in unbounded domains
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 5(36)
\pages 29--41
\mathnet{http://mi.mathnet.ru/vvgum129}
\crossref{https://doi.org/10.15688/jvolsu1.2016.5.4}
Linking options:
  • https://www.mathnet.ru/eng/vvgum129
  • https://www.mathnet.ru/eng/vvgum/y2016/i5/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024