Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 5(36), Pages 13–23
DOI: https://doi.org/10.15688/jvolsu1.2016.5.2
(Mi vvgum127)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

The Liouville type theorems for solution of stationary Schrödinger equation with finite Dirichlet integral

A. G. Losev, V. V. Filatov

Volgograd State University
Full-text PDF (355 kB) Citations (3)
References:
Abstract: In this article we learn some property of solutions of stationary Shrödinger equation
\begin{equation} Lu=\Delta u-c(x)u=0, \tag{1} \end{equation}
where $c(x)\geq0$ smooth function, with finite Dirichlet integral
\begin{equation} \int\limits_{M}|u|^2+c(x)u^2dx \tag{2} \end{equation}
on non compact Riemannian manifolds. We prove an analog of Ahlfors's theorem on existing of non-trivial boundary harmonic function with finite energy integral.
Main result of this article is the next theorem. Let $M$ be non-compact Riemannian manifold.
Theorem 1. If non-trivial solution of equation (1) with finite integral (2) exists on $M$ (this solution may be not bounded), then there exists bounded solution of equation (1) with finite energy integral (2).
To proof this theorem we use the following lemmas.
Lemma 1. (Maximum principle) Let $B$ be precompact open set in $M$ with smooth boundary. If
$$Lu=0,\ x\in B,$$
then
$$\sup\limits_{B}|u|=\sup\limits_{\partial B}|u|.$$

Lemma 2. Let $B\subset M$ precompact open subset on $M$, $\{\phi_i\}_{i=1}^\infty$ is uniformly bounded on $B$ family of solutions (1), $\phi_i\in C^{2,\alpha}(B).$ Then the family $\{\phi_i\}_{i=1}^\infty$ is compact in class $C^2(B')$, where $B'\subset B$.
Let $F$ be set of functions from class $C^2(B)$ with finite Dirichlet integral
$$\int\limits_{B} |\nabla y|^2+c(x)y^2dx.$$

Lemma 3. $F$ is linear space, also on $F$ can be defined dot product as
$$\langle a,b\rangle=\int\limits_{B} \left(\langle\nabla a, \nabla b\rangle +c(x)ab\right)dx,\quad \forall a,b\in F.$$
and norm for this dot product as
$$\|a\|=\langle a,a\rangle^{\frac{1}{2}}=\left(\int\limits_{B}|\nabla a|^2+c(x)a^2dx\right)^{\frac{1}{2}}.$$

Lemma 4. (Dirichlet principle). Let $B\subset M$—precompact open subset on $M$ with smooth boundary. If for functions $u,v\in C^2(B)$
$$ \left \{
\begin{array}{c} \Delta u-c(x)u=0, x\in B, \\ u|_{\partial B}=v|_{\partial B}, \end{array}
\right. $$
then
$$\int\limits_{B}|\nabla u|^2+c(x)u^2dx\leq\int\limits_{B}|\nabla v|^2+c(x)v^2dx.$$
Keywords: Dirichlet integral, stationary Schrödinger equation, Liouville type theorems, Ahlfors's theorem, riemannian manifolds.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02479-р_поволжье_а
Document Type: Article
UDC: 517.956.224
BBC: 2.22.161.6
Language: Russian
Citation: A. G. Losev, V. V. Filatov, “The Liouville type theorems for solution of stationary Schrödinger equation with finite Dirichlet integral”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 5(36), 13–23
Citation in format AMSBIB
\Bibitem{LosFil16}
\by A.~G.~Losev, V.~V.~Filatov
\paper The Liouville type theorems for solution of stationary Schr\"odinger equation with finite Dirichlet integral
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 5(36)
\pages 13--23
\mathnet{http://mi.mathnet.ru/vvgum127}
\crossref{https://doi.org/10.15688/jvolsu1.2016.5.2}
Linking options:
  • https://www.mathnet.ru/eng/vvgum127
  • https://www.mathnet.ru/eng/vvgum/y2016/i5/p13
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024