Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 5(36), Pages 7–12
DOI: https://doi.org/10.15688/jvolsu1.2016.5.1
(Mi vvgum126)
 

Mathematics

Lindelef type theorems for the minimal surface at infinity

R. S. Akopyan

Volgograd State Agricultural University
References:
Abstract: A lot of works on researching of solutions of equation of the minimal surfaces, which are given over unbounded domains (see, for example, [1–3; 5–7]) in which various tasks of asymptotic behavior of the minimal surfaces were studied. The obtained theorems Lindelef type about the limiting value of the gradient of the solution of the equation of minimal surfaces and Gaussian curvature of the considered surface at infinity.
Let $z=f(x,y)$ is a solution of the equation of minimal surfaces (1) given over the domain $D$ bounded by two curves $L_1$ and $L_2$, coming from the same point and going into infinity. We assume that $f(x,y) \in C^2(\overline {D})$.
For the Gaussian curvature of minimal surfaces $K(x,y)$ will be the following theorem.
Theorem. If the Gaussian curvature $K(x,y)$ of the minimal surface (1) on the curves $L_1$ and $L_2$ satisfies the conditions
$$ K(x,y) \to b_n, \qquad ((x,y)\to \infty, (x,y)\in L_n ) \qquad n=1,\ 2, $$
and, in addition, the gradient of the function $f(x,y)$ on the curves $L_1$ and $L_2$ has the equal limit values for $(x,y)\to \infty$, this is one of two possibilities: or $ K(x,y) $ not limited to $D$, or $b_1 = b_2 = b$ and $K(x,y) \to b$ for $ (x,y)$ tending to infinity along any path lying in the domain $D$.
Keywords: equations of the minimal surfaces, gaussian curvature, asymptotic behavior, holomorphic function, isothermal coordinates, holomorphic in the metric of the surface function.
Document Type: Article
UDC: 517.95
BBC: 22.161
Language: Russian
Citation: R. S. Akopyan, “Lindelef type theorems for the minimal surface at infinity”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 5(36), 7–12
Citation in format AMSBIB
\Bibitem{Ako16}
\by R.~S.~Akopyan
\paper Lindelef type theorems for the minimal surface at infinity
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 5(36)
\pages 7--12
\mathnet{http://mi.mathnet.ru/vvgum126}
\crossref{https://doi.org/10.15688/jvolsu1.2016.5.1}
Linking options:
  • https://www.mathnet.ru/eng/vvgum126
  • https://www.mathnet.ru/eng/vvgum/y2016/i5/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :39
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024