Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, Issue 1(20), Pages 22–33 (Mi vvgum12)  

This article is cited in 6 scientific papers (total in 6 papers)

Applied mathematics

Numerical scheme cSPH — TVD: investigation of influence slope limiters

N. M. Kuz'min, A. V. Belousov, T. S. Shushkåvich, S. S. Khrapov

Volgograd State University
References:
Abstract: The generalisation of combined lagrange-eulerian numerical scheme cSPH — TVD for ideal gas-dynamics equations without extarnal forces in one-dimensional case was described. The results of the Riemann problems numerical simulation for different variants of this numerical scheme are shown. Influence of slope-limitiers and flux computation methods to quality of numerical solution are investigated.
Six version of slope limiters are investigated: minmod, van Leer, van Albada, Kolgan, k-parameter and Colella — Woodward. Two methods of numerical flux computation also investigated: Lax — Friedrichs and Harten — Lax — van Leer.
It is shown, that two pair of slope limiters leads to very similar numerical solution quality: minmod — Kolgan and van Leer — Colella — Woodward for the both version of numerical flux computation — Lax — Friedrichs and Harten — Lax — van Leer methods.
For the Lax — Friedrichs method of numerical flux computation Colella– Woodward slope limiter give the best results and minmod the worse.
For the Harten — Lax — van Leer method of numerical flux computation k-parameter slope limiter give the best results and Kolgan the worse.
The $L_1$ relative error in density varying from $1.76\,\%$ to $3.1\,\%$ depending on the numerical flux computation method and kind of slope limiter.
It is shown, that for all investigated variants of cSPH — TVD method numerical solution of Riemann problem very similar to exact.
It is very interesting, that k-parameter slope limiter in combination with Lax — Friedrichs method of numerical flux computation leads to strange features near to contact discontinuity and rarefaction wave. But, in combination with Harten — Lax — van Leer method of numerical flux computation it leads to the best of all results without these strange features.
Keywords: numerical schemes, SPH, TVD, slope limiters, combined lagrange-eulerian approach.
Funding agency Grant number
Russian Foundation for Basic Research 13-07-97056
13-01-97062
13-05-97065
Ministry of Education and Science of the Russian Federation 8.2419.2011
Document Type: Article
UDC: 524.7-8
BBC: 22.193
Language: Russian
Citation: N. M. Kuz'min, A. V. Belousov, T. S. Shushkåvich, S. S. Khrapov, “Numerical scheme cSPH — TVD: investigation of influence slope limiters”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 1(20), 22–33
Citation in format AMSBIB
\Bibitem{KuzBelShu14}
\by N.~M.~Kuz'min, A.~V.~Belousov, T.~S.~Shushkåvich, S.~S.~Khrapov
\paper Numerical scheme cSPH --- TVD: investigation of influence slope limiters
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2014
\issue 1(20)
\pages 22--33
\mathnet{http://mi.mathnet.ru/vvgum12}
Linking options:
  • https://www.mathnet.ru/eng/vvgum12
  • https://www.mathnet.ru/eng/vvgum/y2014/i1/p22
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024