Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical Physics and Computer Simulation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, Issue 4(35), Pages 66–74
DOI: https://doi.org/10.15688/jvolsu1.2016.4.4
(Mi vvgum118)
 

Mathematics

On the implicit function theorem for Lipschitz mappings

I. V. Zhuravlev

Volgograd State University
References:
Abstract: New estimations for Lipschitz constant of solutions in the Clarke's implicit function theorem are proved.
Let $U=B_{x_{0}}^{n}(r_{1})\subset \mathbf{\mathbf{R}}^{n},\;V=B_{y_{0}}^{m}(r_{2})\subset \mathbf{R}^{m}$ and $F:U\times V\rightarrow \mathbf{R}^{m}$ be a local Lipschitz mapping in some neighbourhood of point $(x_{0},y_{0})$. Let $\partial_{y}F(x_{0},y_{0})$ is of maximal rank. Then for every $\Delta ^{\ast },\;\Delta <\Delta ^{\ast },$ there exist $R,\;0<R\leq \min \{r_{1},r_{2}\}$, and a unique Lipschitz mapping $G:B_{x_{0}}^{n}(R)\rightarrow B_{y_{0}}^{m}(\Omega R)$ such that
\begin{equation*} G(x_{0})=y_{0},\quad F(x,G(x))=F(x_{0},y_{0}),\;x\in B_{x_{0}}^{n}(R), \end{equation*}
and
\begin{equation*} \left\vert G(x_{2})-G(x_{1})\right\vert \leq \Delta ^{\ast}|x_{2}-x_{1}|,\;x_{2}, x_{1}\in B_{x_{0}}^{n}(R). \end{equation*}

Moreover, we have $\lim\limits_{r\rightarrow 0+}Lip(G,B_{x_{0}}^{n}(r))\leq\Delta.$
Keywords: the implicit function theorem, the inverse function theorem, Clarke derivative, Lipschitz mappings, Lipschitz constant.
Document Type: Article
UDC: 517.51
BBC: 22.161.5
Language: Russian
Citation: I. V. Zhuravlev, “On the implicit function theorem for Lipschitz mappings”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 4(35), 66–74
Citation in format AMSBIB
\Bibitem{Zhu16}
\by I.~V.~Zhuravlev
\paper On the implicit function theorem
for Lipschitz mappings
\jour Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica
\yr 2016
\issue 4(35)
\pages 66--74
\mathnet{http://mi.mathnet.ru/vvgum118}
\crossref{https://doi.org/10.15688/jvolsu1.2016.4.4}
Linking options:
  • https://www.mathnet.ru/eng/vvgum118
  • https://www.mathnet.ru/eng/vvgum/y2016/i4/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical Physics and Computer Simulation
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :64
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024