|
Mathematics
On the implicit function theorem
for Lipschitz mappings
I. V. Zhuravlev Volgograd State University
Abstract:
New estimations for Lipschitz constant of solutions in the Clarke's implicit function theorem are proved.
Let $U=B_{x_{0}}^{n}(r_{1})\subset \mathbf{\mathbf{R}}^{n},\;V=B_{y_{0}}^{m}(r_{2})\subset \mathbf{R}^{m}$ and $F:U\times V\rightarrow \mathbf{R}^{m}$ be a local Lipschitz
mapping in some neighbourhood of point $(x_{0},y_{0})$. Let $\partial_{y}F(x_{0},y_{0})$ is of maximal rank. Then for every $\Delta ^{\ast
},\;\Delta <\Delta ^{\ast },$ there exist $R,\;0<R\leq \min \{r_{1},r_{2}\}$,
and a unique Lipschitz mapping $G:B_{x_{0}}^{n}(R)\rightarrow
B_{y_{0}}^{m}(\Omega R)$ such that
\begin{equation*}
G(x_{0})=y_{0},\quad F(x,G(x))=F(x_{0},y_{0}),\;x\in B_{x_{0}}^{n}(R),
\end{equation*}
and
\begin{equation*}
\left\vert G(x_{2})-G(x_{1})\right\vert \leq \Delta ^{\ast}|x_{2}-x_{1}|,\;x_{2}, x_{1}\in B_{x_{0}}^{n}(R).
\end{equation*}
Moreover, we have $\lim\limits_{r\rightarrow 0+}Lip(G,B_{x_{0}}^{n}(r))\leq\Delta.$
Keywords:
the implicit function theorem, the inverse function theorem, Clarke derivative, Lipschitz mappings, Lipschitz constant.
Citation:
I. V. Zhuravlev, “On the implicit function theorem
for Lipschitz mappings”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 4(35), 66–74
Linking options:
https://www.mathnet.ru/eng/vvgum118 https://www.mathnet.ru/eng/vvgum/y2016/i4/p66
|
Statistics & downloads: |
Abstract page: | 228 | Full-text PDF : | 64 | References: | 46 |
|