Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, Volume 34, Issue 3, Pages 410–434
DOI: https://doi.org/10.35634/vm240307
(Mi vuu898)
 

MATHEMATICS

On the construction of partially non-anticipative multiselector and its application to dynamic optimization problems

D. A. Serkovab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russia
b Ural Federal University, ul. Mira, 19, Yekaterinburg, 620062, Russia
References:
Abstract: Let sets of functions $Z$ and $\Omega$ on the time interval $T$ be given, let there also be a multifunction (m/f) $\alpha$ acting from $\Omega$ to $Z$ and a finite set $\Delta$ of moments from $T$. The work deals with the following questions: the first one is the connection between the possibility of stepwise construction (specified by $\Delta$) of a selector $z$ of $\alpha(\omega)$ for an unknown step-by-step implemented argument $\omega\in\Omega$ and the existence of a multiselector (m/s) $\beta$ of the m/f $\alpha$ with a non-anticipatory property of special kind (we call it partially or $\Delta$-non-anticipated); the second question is when and how non-anticipated m/s could be expressed by means of partially non-anticipated one; and the last question is how to build the above $\Delta$-non-anticipated m/s $\beta$ for a given pair $(\alpha,\Delta)$.
The consideration of these questions is motivated by the presence of such step-by-step procedures in the differential game theory, for example, in the alternating integral method, in pursuit–evasion problems posed with use of counter-strategies, and in the method of guide control.
It is shown that the step-by-step construction of the value $z\in\alpha(\omega)$ can be carried out for any steps-implemented argument $\omega$ if and only if the above m/s $\beta$ is non-empty-valued. The key point of the work is the description of finite-step procedure for calculation of this $\Delta$-non-anticipated m/s $\beta$. Conditions are given that guarantee the m/s $\beta$ be a non-anticipative one. Illustrative examples are considered that include, in particular, control problems with disturbance.
Keywords: non-anticipative multi-selectors, set-valued strategies, optimization of guarantee
Received: 19.07.2024
Accepted: 26.08.2024
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N70, 54C65
Language: English
Citation: D. A. Serkov, “On the construction of partially non-anticipative multiselector and its application to dynamic optimization problems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:3 (2024), 410–434
Citation in format AMSBIB
\Bibitem{Ser24}
\by D.~A.~Serkov
\paper On the construction of partially non-anticipative multiselector and its application to dynamic optimization problems
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2024
\vol 34
\issue 3
\pages 410--434
\mathnet{http://mi.mathnet.ru/vuu898}
\crossref{https://doi.org/10.35634/vm240307}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001333184900006}
Linking options:
  • https://www.mathnet.ru/eng/vuu898
  • https://www.mathnet.ru/eng/vuu/v34/i3/p410
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025