Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, Volume 34, Issue 1, Pages 109–136
DOI: https://doi.org/10.35634/vm240108
(Mi vuu882)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$

A. V. Chernov

Nizhny Novgorod State University, pr. Gagarina, 23, Nizhny Novgorod, 603950, Russia
Full-text PDF (384 kB) Citations (1)
References:
Abstract: Let $U$ be the set of admissible controls, $T>0$ and it be given a scale of Banach spaces $W[0;\tau]$, $\tau\in(0;T]$, such that the set of constrictions of functions from $W=W[0;T]$ to a closed segment $[0;\tau]$ coincides with $W[0;\tau]$; $F[\cdot;u]\colon W\to W$ be a controlled Volterra operator, $u\in U$. For the operator equation $x=F[x;u]$, $x\in W$, we introduce a comparison system in the form of functional-integral equation in the space $\mathbf{C}[0;T]$. We establish that, under some natural hypotheses on the operator $F$, the preservation of the global solvability of the comparison system pointed above is sufficient to preserve (under small perturbations of the right-hand side) the global solvability of the operator equation. This fact itself is analogous to some results which were obtained by the author earlier. The central result of the paper consists in a set of signs for stable global solvability of functional-integral equations mentioned above which do not use hypotheses similar to local Lipschitz continuity of the right-hand side. As a pithy example of special interest, we consider a nonlinear nonstationary Navier–Stokes system in the space $\mathbb{R}^3$.
Keywords: second kind evolutionary Volterra equation of general form, functional-integral equation, comparison system, preservation of global solvability, uniqueness of solution, nonlinear nonstationary Navier–Stokes system
Received: 15.07.2023
Accepted: 30.01.2024
Bibliographic databases:
Document Type: Article
UDC: 517.957, 517.988, 517.977.56
MSC: 47J05, 47J35, 47N10
Language: Russian
Citation: A. V. Chernov, “Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:1 (2024), 109–136
Citation in format AMSBIB
\Bibitem{Che24}
\by A.~V.~Chernov
\paper Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2024
\vol 34
\issue 1
\pages 109--136
\mathnet{http://mi.mathnet.ru/vuu882}
\crossref{https://doi.org/10.35634/vm240108}
Linking options:
  • https://www.mathnet.ru/eng/vuu882
  • https://www.mathnet.ru/eng/vuu/v34/i1/p109
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :54
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024