Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, Volume 34, Issue 1, Pages 48–64
DOI: https://doi.org/10.35634/vm240104
(Mi vuu878)
 

MATHEMATICS

Multi-pursuer pursuit differential game for an infinite system of second order differential equations

R. Yu. Kazimirovaab, G. I. Ibragimovcd, R. M. Hasima

a Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
b Andijan State University, Andijan, 170100, Uzbekistan
c V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, University street, 9, Tashkent, 100174, Uzbekistan
d Tashkent State University of Economics, Islam Karimov street, 49, Tashkent, 100066, Uzbekistan
References:
Abstract: We study a pursuit differential game of many pursuers and one evader. The game is described by the infinite systems of $m$ inertial equations. By definition, pursuit in the game is completed if the state and its derivative of one of the systems are equal to zero at some time. In the literature, such a condition of completion of pursuit is also called soft landing. We obtain a condition in terms of energies of players which is sufficient for completion of pursuit in the game. The pursuit strategies are also constructed.
Keywords: differential game, control, strategy, many pursuers, infinite system of differential equations, integral constraint
Received: 23.10.2023
Accepted: 27.01.2024
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N75, 91A23
Language: English
Citation: R. Yu. Kazimirova, G. I. Ibragimov, R. M. Hasim, “Multi-pursuer pursuit differential game for an infinite system of second order differential equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:1 (2024), 48–64
Citation in format AMSBIB
\Bibitem{KazIbrHas24}
\by R.~Yu.~Kazimirova, G.~I.~Ibragimov, R.~M.~Hasim
\paper Multi-pursuer pursuit differential game for an infinite system of second order differential equations
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2024
\vol 34
\issue 1
\pages 48--64
\mathnet{http://mi.mathnet.ru/vuu878}
\crossref{https://doi.org/10.35634/vm240104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001182405100005}
Linking options:
  • https://www.mathnet.ru/eng/vuu878
  • https://www.mathnet.ru/eng/vuu/v34/i1/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :100
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024