Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, Volume 33, Issue 4, Pages 659–674
DOI: https://doi.org/10.35634/vm230408
(Mi vuu874)
 

This article is cited in 1 scientific paper (total in 1 paper)

COMPUTER SCIENCE

Method of solution composition in contact problems with friction of deformable bodies

A. S. Karavaev, S. P. Kopysov

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Full-text PDF (808 kB) Citations (1)
References:
Abstract: A new iterative method for solving static contact problems of two deformable bodies is proposed. The method is based on alternately solving the unilateral contact problem for the first body and the linear elasticity problem with natural boundary conditions for the second body. Fulfillment of Coulomb's friction law involves correction of tangential nodal forces in the sliding area and setting kinematic boundary conditions in the sticking area for the contact boundary of the first body. The goal of solving the linear elasticity problem for the second body is to gradually equalize contact loads on the interacting surfaces. The advantages of the method are demonstrated by solving a number of model examples, including unilateral contact of a linear-elastic plate with a solid foundation, bilateral contact of pressing a deformable block into the foundation, the Hertz problem of contact of two deformable cylinders etc. The method can solve problems on flat and curvilinear contact boundaries.
Keywords: contact problem, Coulomb's friction law, finite element method
Received: 20.09.2023
Accepted: 15.11.2023
Bibliographic databases:
Document Type: Article
UDC: 519.63
MSC: 65N55
Language: Russian
Citation: A. S. Karavaev, S. P. Kopysov, “Method of solution composition in contact problems with friction of deformable bodies”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:4 (2023), 659–674
Citation in format AMSBIB
\Bibitem{KarKop23}
\by A.~S.~Karavaev, S.~P.~Kopysov
\paper Method of solution composition in contact problems with friction of deformable bodies
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2023
\vol 33
\issue 4
\pages 659--674
\mathnet{http://mi.mathnet.ru/vuu874}
\crossref{https://doi.org/10.35634/vm230408}
Linking options:
  • https://www.mathnet.ru/eng/vuu874
  • https://www.mathnet.ru/eng/vuu/v33/i4/p659
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024